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Abstract

In computing with words and perceptions, or CWP for short, the
objects of computation are words, propositions and perceptions
described in a natural language. In science, there is a deep-
seated tradition of striving for progression from perceptions to
measurements, and from the use of words to the use of numbers.
Reflecting the bounded ability of sensory organs and, ultimately,
the brain, to resolve detail, perceptions are intrinsically
imprecise. Perceptions are f-granular in the sense that (a) the
perceived values of attributes are fuzzy, and (b) the perceived
values of attributes are granular, with a granule being a clump
of values drawn together by indistinguishability, similarity,
proximity or functionality.

F-granularity of perceptions is the reason why in the enormous
literature on perceptions one cannot find a theory in which
perceptions are objects of computation, as they are in CWP.

PNL (precisiated natural language) associates with a natural
language, NL, a precisiation language, GCL (Generalized
Constraint Language), which consists of generalized constraints
and their combinations and qualifications.

The principal function of PNL is to serve as a system for
computation and reasoning with perceptions. The need for
redefinition arises because standard bivalent — classic-based
definitions may lead to counterintuitive conclusions.

Computing with words and perceptions provides a basis for an
important  generalization of probability theory, namely,
perception-based probability theory (PTp).

The importance of CWP derives from the fact that it opens the
door to adding to any measurement-based theory.

Keywords: fuzzy, CWP (computing with words), PNL
(precisiated natural language), probability theory.
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EVOLUTION OF FUZZY LOGIC—A PERSONAL

PERSPECTIVE
generality 4 i vy
computing with words and Bwsnaatzaion
perceptions (CWP) ——»
f.g-generalization
f-generalization
I classical bivalent
» time
1965 1973 7999

1965: crisp sets —» fuzzy sets
1973: fuzzy sets —» granulated fuzzy sets (linguistic variable)
1999: measurements —» perceptions

3145 ; LAZ 6/27/2003
WHAT IS CWP?

THE BALLS-IN-BOX PROBLEM

Version 1. Measurement-based

e a box contains 20 black and white balls
e over 70% are black

e there are three times as many black balls as white
balls

e what is the number of white ballis?

e what is the probability that a ball drawn at
random is white?

4145 LAZ 6/27/2003
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CONTINUED

Version 2. Perception-based

e a box contains about 20 black and white
balls

e most are black

e there are several times as many black
balls as white balls

e What is the number of white balls?

e what is the probability that a ball drawn at
random is white?

LAZ 6/27/2003

CONTINUED

Version 3. Perception-based

sizes
most are large
there are several times as many large balls as

box

a box contains about 20 black balls of various |

small balls

what is the number of small balls?

what is the probability that a ball drawn at

random is small?

LAZ 6/27/2003
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MEASUREMENT-BASED

e a box contains 20 black
and white balls

e over seventy percent
are black

e there are three times as
many black balls as
white balls

e what is the number of
white balls?

e whatis the probability

that a ball picked at
random is white?

7145

PERCEPTION-BASED (version 1)

e 2 box contains about 20

black and white balls
most are black

there are several times
as many black balls as
white balls

what is the number of
white balls

what is the probability
that a ball drawn at
random is white?

LAZ 6/27/2003

COMPUTATION (version 1)

e measurement-based

X = number of black
balls

Y, number of white
balls

X>07+20=14
X+Y=20

X =3Y

X=15 :Y=5
p =5/20= .25

2145

e perception-based

X = number of black
balls

Y = number of white
balls

X = most x 20*
X =several *Y
XtY=20
P=Y/N

LAZ 6/27/2003
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BASIC PERCEPTIONS
attributes of physical objects
*distance *length weight
*time width *height
speed sarea *size
sdirection volume *temperature

sensations and emoftions

scolor shunger sjoy
smell thirst sanger
spain scold fear
concepts

scount scausality struth
ssimilarity srelevance +likelihood
scluster srisk *possibility

9/145 A LAZ 6/27/2003

DEEP STRUCTURE OF PERCEPTIONS

e perception of likelihood
e perception of truth (compatibility)

e perception of possibility (ease of attainment or
realization)

e perception of similarity
e perception of count (absolute or relative)
e perception of causality

subjective probability = quantification of perception of
likelihood

10/145 L LAZ 6/27/2003
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MEASUREMENT-BASED VS. PERCEPTION-BASED INFORMATIOI

it is 35 C° oIt is very warm
*Eva is 28 *Eva is young
sprobability is 0.8 *probability is high
. *jit is cloudy

= : «fraffic is heavy

*it is hard to find parking
near the campus

. measuremmr—ﬁqggﬂ information may be viewed as special case of
11RgEception-hased ihf&[_m_atiun LAZ 8/27/2003

MEASUREMENT-BASED VS.
PERCEPTION-BASED CONCEPTS

measurement-based perception-based
expected value usual value
stationarity regularity
continuous smooth

Example of a regular process
T=(t), 8, 1,...)
t= tra'l."r‘el__' time from home to office on day |i.

Y\

121145 A Y LAZ 6/27/2003
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PERCEPTION OF MATHEMATICAL
CONCEPTS: PERCEPTION OF FUNCTION

Y /-f

g’ M
0
Y4
[medfum x large
______ ; f* (fuzzy graph, :
r IA’_ (fuzzy graph) P perception o

if X is small then Y is small
if X is medium then Y is large
0 Wl X if X is large then Y is small

131145 LAZ 6/27/2003
TEST PROBLEM

e A function, Y=1(X), is defined by its fuzzy graph
expressed as

f, if X is small then Y is small

if X is medium then Y is large

if X is large then Y is small
(a) what is the value of Y if X is not large?
(b) wha;, is the maximum value of Y

14/145 LAZ 6/27/2003
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BIMODAL DISTRIBUTION
(PERCEPTION-BASED PROBABILITY
DISTRIBUTION)

probability

A, As

P(X) =P;1)\A; + Pip\A, + Pigl\A,
Prob {Xis A;} is P;

Pm'5-\?9wlsingle+highhnedium +lowl\large

15/145 LAZ 6/27/2003

COMPUTING WITH WORDS AND PERCEPTIONS—A
SHIFT IN DIRECTION IN COMPUTING AND DECISION
ANALYSIS

* Computing with words and perceptions,
or CWP for short, is a mode of computing in
which the objects of computation are
words, propositions and perceptions
described in a natural language.

16/145 LAZ 6/27/2003
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CONTINUED

* Perceptions play a key role in human
cognition. Humans—but not machines—
have a remarkable capability to perform a
wide variety of physical and mental tasks
without any measurements and any
computations. Everyday examples of such
tasks are driving a car in city traffic, playing
tennis and summarizing a book.

17/145 b LAZ 6/27/2003

COMPUTING WITH WORDS AND PERCEPTIONS
(CWP)
Key points

e In computing with words and perceptions,
the objects of computation are words,
propositions, and perceptions described
in a natural language

e A natural language is a system for
describing perceptions

e In CWP, a perception is equated to its
description in a natural language

18/145 : LAZ 6/27/2003
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CONTINUED

e in science, it is a deep-seated tradition to
strive for the ultimate in rigor and
precision

e words are less precise than numbers

e why and where, then, would words be
used in preference to numbers?

19/145 b LAZ 6/27/2003

CONTINUED

e when the available information is not
precise enough to justify the use of
numbers

e when precision carries a cost and there is
a tolerance for imprecision which can be
exploited to achieve tractability,
robustness and reduced cost

e when the expressive power of words is
greater than the expressive power of
numbers

20/145 : LAZ 6/27/2003
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CONTINUED

e One of the major aims of CWP is to serve as
a basis for equipping machines with a
capability to operate on perception-based
information. A key idea in CWP is that of
dealing with perceptions through their
descriptions in a natural language. In this
way, computing and reasoning with
perceptions is reduced to operating on
propositions drawn from a natural language.

21/145 b LAZ 6/27/2003

CONTINUED

e In CWP, what is employed for this purpose is
PNL (Precisiated Natural Language.) In PNL,
a proposition, p, drawn from a natural
language, NL, is represented as a
generalized constraint, with the language of
generalized constraints, GCL, serving as a
precisiation language for computation and
reasoning, PNL is equipped with two
dictionaries and a modular multiagent
deduction database. The rules of deduction
are expressed in what is referred to as the
Protoform Language (PFL).

221145 LAZ 6/27/2003
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KEY POINTS

decisions are based on information

in most realistic settings, decision-relevant
information is a mixture of measurements and
perceplions

examples: buying a house; buying a stock
existing methods of decision analysis are

measurement-based and do not provide effective
tools for dealing with perception-based information

a decision is strongly influenced by the perception
of likelihoods of outcomes of a choice of action

23145

24/145

LAZ 6/27/2003

KEY POINTS

in most realistic settings:

a) the outcomes of a decision cannot be predicted
with certainty

b) decision-relevant probability distributions are f-
granular

¢) decision-relevant events, functions and
relations are f-granular

perception-based probability theory, PTp, is
basically a calculus of f-granular probability
distributions, f-granular events, f-granular
functions, f-granular relations and f-granular
counts

LAZ 6/27/2003
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OBSERVATION

e machines are driven by measurements
e humans are driven by perceptions

e fo enable a machine to mimic the remarkable
human capability to perform a wide variety of
physical and mental tasks using perception-
based information, it is necessary to have a
means of converting measurements into
perceptions

25/145 b LAZ 6/27/2003

BASIC PERCEPTIONS / F-GRANULARITY

e temperature: warm+cold+very warmtmuch
warmer+...

time: soon + about one hour + not much later +...
distance: near + far + much farther +...

speed: fast + slow +much faster +...

length: long + short + very long +...

A, :
mall
b2 b +large

O

> size

26/145 : LAZ 6/27/2003
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CONTINUED

e similarity: low + medium + high +...

e possibility: low + medium + high + almost
impossible +...

e likelihood: likely + unlikely + very likely +...

e truth (compatibility): true + quite true + very
untrue +...

e count: many + few + most + about 5 (5%) +...

subjective probability = perception of
likelihood

27/145 b LAZ 6/27/2003

CONTINUED

e function: if X is small then Y is large +...
(X is small, Y is large)
e probability distribution: low \ small + low \ medium +
high \ large +...

e Count\ attribute value distribution: 5* \ small + 8*\
large +...

PRINCIPAL RATIONALES FOR F-GRANULATION

detail not known
o detail not needed
» detail not wanted

28145 : LAZ 6/27/2003
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20/145 LAZ 6/27/2003
computing computing with words
with numbers and perceptions

computing computing precisiated
with intervals with granules natural
language
; - CTP: tational
- a granule is defined t";';f’;of PEr::EpﬁDns
o gsrze alized PTp: perception-based
consIRGR probability theory
. THD: theory of hierarchical
definability
\§
30/145 \\ LAZ 6/27/2003
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GRANULAR COMPUTING
GENERALIZED VALUATION

valuation = assignment of a value to a variable

sfngul; : Wme granular values

measurement-base perception-based

31/145 \‘L e
F-GENERALIZATION

e f-generalization of a theory, T, involves an
introduction into T of the concept of a fuzzy set

e f-generalization of PT, PT* , adds to PT the
capability to deal with fuzzy probabilities, fuzzy
probability distributions, fuzzy events, fuzzy
functions and fuzzy relations

LAZ 6/27/2003
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F.G-GENERALIZATION

e f.g-generalization of T, T**, invoives an
introduction into T of the concept of a granulated
fuzzy set

e f.g-generalization of PT, PT** , adds to PT* the
capability to deal with f-granular probabilities, f-
granular probability distributions, f-granular
events, f-granular functions and f-granular

relations
H i
0 » X 0 » X

33/145 LAZ 6/27/2003

EXAMPLES OF F-GRANULATION
(LINGUISTIC VARIABLES)

color: red, blue, green, yellow, ...
age: young, middle-aged, old, very old
size: small, big, very big, ...

distance: near, far, very, not very far, ...

My you middle-aged
‘.Z ng ‘ﬂ g

Ve

100 » age

&old

» humans have a remarkable capability to perform a wide variety

of physical and mental tasks, e.g., driving a car in city traffic,

without any measurements and any computations

- one of the principal aims of CTF is to develop a better

understanding of how this capability can be added to machines
34/145 LAZ 6/27/2003
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PRECISIATED
NATURAL LANGUAGE

36/145 LAZ 6/27/2003

-

WHAT IS PRECISIATED NATURAL LANGUAGE (PNL)?
PRELIMINARIES

« a proposition, p, in a natural language, NL,
is precisiable if it translatable into a
precisiation language

- in the case of PNL, the precisiation
language is the Generalized Constraint
Language, GCL

- precisiation of p, p*, is an element of GCL
(GC-form)

37145 LAZ 6/27/2003
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WHAT IS PNL?

e PNL is a sublanguage of precisiable
propositions in NL which is equipped with
two dictionaries: (1) NL to GCL; (2) GCL to
PFL (Protoform Language); and (3) a modular
multiagent database of rules of deduction
(rules of generalized constrained
propagation) expressed in PFL.

38/145 LAZ 6/27/2003

GENERALIZED CONSTRAINT

sstandard constraint: X € C
sgeneralized constraint: Xisr R

copula

4— GC-form (generalized constraint form of type r,

type identifier

constraining relation

constrained variable

X=(X;s s X,,)
+X may have a structure: X=Location (Residence(Carol))
+X may be a function of another variable: X=1(Y)
X may be conditioned: (X/Y)

r:=/</../c /> /blank/v/p/u/rs/fg/ps/...

39/145 LAZ 6/27/2003
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GC-FORM (GENERALIZED CONSTRAINT

rp

40/145

r.rs

r:fg

ru
r: ps

41/145

FORM OF TYPE 1)

XisrR II‘

equality constraint: X=R is abbreviation of X is=R
inequality constraint: X< R

subsethood constraint: X c R

possibilistic constraint; X is R; R is the possibility
distribution of X

veristic constraint; X isv R; R is the verity
distribution of X

probabilistic constraint; X isp R; R is the
probability distribution of X

LAZ 6/27/2003
CONTINUED

random set constraint; X isrs R; R is the set-
valued probability distribution of X

fuzzy graph constraint; X isfg R; X is a function
and R is its fuzzy graph

usuality constraint; X isu R means usually (X is R)

Pawlak set constraint: X isps ( X, X) means that
X is a setand X and X are the lower and upper
approximations to X

LAZ 6/27/2003
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GENERALIZED CONSTRAINT LANGUAGE (GCL)

e GCL is generated by combination,
qualification and propagation of generalized
constraints

e in GCL, rules of deduction are the rules
governing generalized constraint propagation

e examples of elements of GCL
« (Xisp R) and (X,Y) is S)
- (Xisr R) is unlikely) and (X iss S) is likely
+ if X is small then Y is large

e the language of fuzzy if-then rules is a
sublanguage of PNL

421145 LAZ 6/27/2003

THE BASIC IDEA

! NL GeL
| description - precisiation
- NL(p)
perception description of precisiation
perception of perception
GCL PFL
abstraction
GC(p) PF(p)
precisiation
of perception

43/145 LAZ 6/27/2003
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WHAT IS A PROTOFORM?

e [nformally, a protoform (abbreviation of “prototypical
form”) is a symbolic expression which places in evidence
the deep semantic structure of a proposition, question or

command.
2kamples instantiation
XisA ——— Speedis 150 km/h
Xisp A EoRbiGagon X is a normally distributed
random variable with mean m and
, instantiation o 02 .
A(B)isC ———————»Age(Eva) is young (Evais
young)

Prob (X is A) is B instantiation ,  (Jsyafly Robert returns
from work at about 6 pm

A (B, C) is D instantiation | Distance between Los Angeles

and San Francisco is about 600
km.

44/145 b LAZ 6/27/2003

CONTINUED

e A protoform of p defines its deep semantic structure
Examples:
e Allan is tall - A(B)is R
» distance between New York and Boston is 200
miles— A(B, C)is R
e Most Swedes are tall — Count (A/B) is Q

e Usually Robert returns from work at about 6 pm —
Prob (X is A) is B

45/145 L LAZ 6/27/2003
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DICTIONARIES
1:
proposition in NL precisiation
P p* (GC-form)

most Swedes are tall | 2’ Count (tall. Swedes/Swedes) is most

2:
precisiation protoform

p* (GC-form) PF(p’)

2/ Count (tall.Swedes/Swedes) is most QA’s are B’s

46145 b LAZ 6/27/2003

EXAMPLE OF TRANSLATION

P: usually Robert returns from work at about 6 pm
P*: Prob {(Time(Return(Robert)) is 6 pm} is usually
PF(p): Prob {Xis A} is B

X: Time (Return (Robert))

A: 6 pm

B: usually

p e NL
p* e GCL
PF(p) € PFL

471145 g LAZ 6/27/2003
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TRANSLATION FROM NL TO PFL

examples
Evais young— A (B) is C

T

Age Eva young
Eva is much younger than Pat — (A (B), A(C)) is R

Age Eva Ad® pat much
younger

usually Robert returns from work at about 6pm——>

Prob {A is B} is C

usually
about 6 pm
Time (Robert returns from work)
421145 A LAZ 6/27/2003
BASIC STRUCTURE OF PNL
NL GCL PFL
pe precisiation ?* ‘e i
T *»  GC(p) T *» PF(p)
precisiation abstraction
@ WKDB ®) B
ot —— | deduction
knowledge d
atabase
database

«In PNL, deduction=generalized constraint propagation

DDB: deduction database=collection of protoformal rules
governing generalized constraint propagation

WB.' PNL-based LAZ 6/27/2003

40



Scientific and Technical Bulletin Series: Electrotechnics, Electronics, Automatic

Control and Computer Science, Vol. 2, No. 1, 2005, ISSN 1584-9198

50/145

WORLD KNOWLEDGE

examples

icy roads are slippery
big cars are safer than small cars

usually it is hard to find parking near the campus
on weekdays between 9 and 5

most Swedes are tall
overeating causes obesity
Ph.D. is the highest academic degree

an academic degree is associated with a field of
study

Princeton employees are well paid

LAZ 6/27/2003

WORLD KNOWLEDGE

KEY POINTS

world knowledge—and especially
knowledge about the underlying
probabilities—plays an essential role in
disambiguation, planning, search and
decision processes

what is not recognized to the extent that it
should, is that world knowledge is for the
most part perception-based

51/145

LAZ 6/27/2003
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WORLD KNOWLEDGE: EXAMPLES

specific:
e if Robert works in Berkeley then it is likely that
Robert lives in or near Berkeley

e if Robert lives in Berkeley then it is likely that
Robert works in or near Berkeley

generalized:

if A/Person works in B/City then it is likely that A
lives in or near B

precisiated:

Distance (Location (Residence (A/Person),
Location (Work (A/Person) isu near

protoform:{F (A (B (C)), A (D (C))) isu R

52/145 %, LAZ 6/27/2003
ORGANIZATION OF WORLD KNOWLEDGE
EPISTEMIC (KNOWLEDGE-DIRECTED) LEXICON (EL)

(ONTOLOGY-RELATED)

w;= granular strength of
association between i and
i

+-network of nodes and links

e j (lexine): object, construct, concept (e.g., car, Ph.D.
degree)

K(i): world knowledge abouti (mostly perception-based)
K(i) is organized into nfi) relations Ry, ..., R;
entries in R, are bimodal-distribution-valued attributes of i

values of attributes are, in general, granular and context-
dependent

53/145 LAZ 6/27/2003
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EPISTEMIC LEXICON
/ﬁ_————v lexine;
lexine;
ry;  iisaninstance of (is or isu)
iis a subset of | (is or isu)
I is a superset of j (is or isu)
j is an attribute of i
icauses j (or usually)
iand j are related
54/145 ‘. LAZ 6/27/2003
EPISTEMIC LEXICON
FORMAT OF RELATIONS
perception-based relation
lexine| A1 | - | A, | «—— attributes
Gy Gm +——— granular values

example
car | Make | Price

ford G

chevy

G: 20%% \ L 15Kk + 40*% \[15K", 25K*] + o+

SEAis granular count LAZ 6/27/2003
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PROTOFORM-BASED
DEDUCTION

56/145 LAZ &/27/2003

THE CONCEPT OF PROTOFORM AND
RELATED CONCEPTS

Fuzzy Logic Bivalent Logic

57/145
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THE CONCEPT OF A PROTOFORM

Cwp— PNL
PFL Protoform Language

e Informally, a protoform—abbreviation of prototypical
form—is an abstracted summary. More specifically,
a protoform is a symbolic expression which defines
the deep semantic structure of a construct such as a
proposition, command, question, scenario, concept
or a system of such constructs

o Example:
Eva is young — A(B) is C
ghstraction
young’, | (o]
52/145 " Instantiation LAZ 6/27/2003

TRANSLATION FROM NL TO PFL

examples
Most Swedes are tall — Count (A/B) is Q

Eva is much younger than Pat — (A (B), A(C)) is R

07 T

Age Eva Age Pat much
younger

usually Robert returns from work at about 6pm——>

Prob {A is B} is C

L t usually
about 6 pm
Time (Robert returns from work)
59/145 LAZ 6/27/2003
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EXAMPLE

p =it is very unlikely that there will be a significant
increase in the price of oil in the near future

PF(p):
Prob(E) is very.unlikely —— Prob(A) is B
B: Epoch (E*) is near.future —— Attr1 (C) is D
C: significant.increase.in.the.price.of.oil —> Attr2

(Attr3(F))
60/145 ' LAZ 6/27/2003
CONTINUED
semantic network representation of E
E
E*
|—_r'nodfﬁer E variation Eijme
.. df . R tt .
significant «— increase +—— price +— wf‘
v epoch
future
‘ mod
near
61/145 . LAZ 6/27/2003
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CONTINUED

Precisiation (f.b.-concept)

E*: Epoch (Variation (Price (oil)) is significant.increase)
is near.future

Price,
significant
increase
current
present b
62/145 LAZ 6/27/2003
CONTINUED
precisiation of very unlikely
H
|
+—— likely
< unlikely = ant(likely)

very unlikely = 2ant(likely)

0 1 v

very.unlikely {V) = (pﬁkdy (f'v))z

U

63/145 A Y LAZ 6/27/2003
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THE CONCEPT OF i-PROTOFORM

e j-protoform: idealized protoform

e the key idea is to equate the grade of membership,
Ha(u), of an object, u, in a fuzzy set, A, to the
distance of u from an i-protoform

e this idea is inspired by E. Rosch’s work (ca 1972) on
the theory of prototypes

u fuzzy set

object
1 - distance of u
-pr otofqm from i-protoform
eands dis deﬁned""ﬁ'@- PNL LAZ 6/27/2003

EXAMPLE: EXPECTED VALUE (f.f-concept)

e X: real-valued random variable with probability
density g

standard definition of expected value of X

E(X)=|ug(u)du
u

E( X ) = average value of X

e the Izr’be_l “expected value” is misleading

%\

65/145 A Y LAZ 6/27/2003
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i-PROTOFORM-BASED DEFINITION OF
EXPECTED VALUE

9

0 u
I
p.ll :
| S ~ hormalized g

i-protoform of expected
value

U
66/145 - LAZ 6/27/2003
CONTINUED
L normalized probability

density of X

i-protoform = E(X)
u

* E(X) is a fuzzy set

* grade of membership of a particular function, E*(X),
in the fuzzy set of expected value of X is the distance
of EX(X) form best-fitting i-protoform

\§

U

67/145 b Y LAZ 6/27/2003
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68/145

PROTOFORM AND PF-EQUIVALENCE
knowledge base (KB)

— PF-equivalence class (P)

protoform (p): Q A’s are B’s
most Swedes are tall

fow professors are rich

« P is the class of PF-equivalent propositions

» P'does not have a prototype

* P has an abstracted prototype: Q A’s are B’s

*» P is the set of all propositions whose protoform is:
QA'sareB’s

LAZ 6/27/2003

PF-EQUIVALENCE

Scenario A:

£69/145

Alan has severe back pain. He goes to see a
doctor. The doctor tells him that there are
two options: (1) do nothing; and (2) do
surgery. In the case of surgery, there are two
possibilities: (a) surgery is successful, in
which case Alan will be pain free; and (b)
surgery is not successful, in which case Alan
will be paralyzed from the neck down.
Question: Should Alan elect surgery?

LAZ 6/27/2003

50



Scientific and Technical Bulletin Series: Electrotechnics, Electronics, Automatic
Control and Computer Science, Vol. 2, No. 1, 2005, ISSN 1584-9198

PF-EQUIVALENCE

Scenario B:

Alan needs to fly from San Francisco to St.
Louis and has to get there as soon as
possible. One option is fly to St. Louis via
Chicago and the other through Denver. The
flight via Denver is scheduled to arrive in St.
Louis at time a. The flight via Chicago is
scheduled to arrive in St. Louis at time b,
with a<b. However, the connection time in
Denver is short. If the flight is missed, then
the time of arrival in St. Louis will be ¢, with
c>b. Question: Which option is best?

70/145 b LAZ 6/27/2003

PROTOFORM EQUIVALENCE

gain 4

0 »
| options
a

T1/145 : LAZ 6/27/2003
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BASIC STRUCTURE OF PNL

DICTIONARY 1
NL |ecL
P |GC(p)

DICTIONARY 2

GCL

PFL

GC(p)

PF(p)

MODULAR DEDUCTION DATABASE

POSSIBILITY

MODULE

SEARCH
MODULE

PROBABILITY

MODULE

'a/genr

FUZZY LOGIC

MODULE

FUZZY ARITHMETIC
MODULE

EXTENSION
PRINCIPLE MODULE]

2147

T

F/2003|

PROTOFORMAL SEARCH RULES

example

query: What is the distance between the
largest city in Spain and the largest city in
Portugal?

protoform of query: ?Attr (Desc(A), Desc(B))
procedure

73/145

query: ?Name (A)|Desc (A)

query: Name (B)|Desc (B)
query: 2Attr (Name (A), Name (B))

LAZ 6/27/2003
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PROTOFORMAL (PROTOFORM-BASED)
DEDUCTION

FORMAT OF PROTOFORMAL DEDUCTION RULES

LAZ 6/27/2003
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PROTOFORM DEDUCTION RULE: GENERALIZED

MODUS PONENS
fuzzy logic
classical
A <«——— symbolic
A— B
B
y (fuzzy graph;
computational 1 Mamdani)
dadi (implication;
computational 2 D =A+B=C) L
\ relation)
76/145 - LAZ 6/27/2003

PROTOFORMAL RULES OF DEDUCTION

examples

Ha.p(V) =max, (ua(u) A pg(u,v) R ey

computational
part

w Hp(u) =maxy(ug( LJJ Ha(u)g(u)du))
Prob (Xis C) IS D/ . pject to:v = | ue(u)g(u)du
u

Jg(u)du =1
u

W

771145 ) Y LAZ 6/27/2003

54



Scientific and Technical Bulletin Series: Electrotechnics, Electronics, Automatic
Control and Computer Science, Vol. 2, No. 1, 2005, ISSN 1584-9198

PROTOFORM-BASED (PROTOFORMAL)
DEDUCTION

¢ Rules of deduction in the Deduction Database (DDB)
are protoformal

examples: (a) compositional rule of inference

(V) = SUP(11,(4) A 1o (V).

L computational

#,(v)=sup,(p,(u))

Subject to: v = f(u)

computational | pz g/27/2003

CONTINUED

78/145

e Rules of deduction are basically rules governing
generalized constraint propagation

e The principal rule of deduction is the extension
principle

My {V) =Sup, ()u,q (U)
Subject to: v = f(u)

symbolic i computational

Y\

79/145 A Y LAZ 6/27/2003
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GENERALIZATIONS OF THE EXTENSION
PRINCIPLE

information = constraint on a variable

f)isA | *— given information about X

«—— inferred information about X

Hs(V)=sup,(u,(f(u))

Subject to: V = g(u)

W
20/145 k LAZ 6/27/2003

CONTINUED

Xy .o X) iS A 1y(v) = sup,(11,(f(u))

o

Subjectto: v =g(u)

Ho(v)=sup,(pu,(f(u))

Subject to: V=g(U)
j=1L.,n

81/145 \4\_ LAZ 6/27/2003
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PROBLEM

X: real-valued random variable

f(X) isp P

N P
%f E
A N P3
94 o——

VL @SPy i qraEpyeee

q:= Py

82/145 LAZ 6/27/2003

REASONI&G WITH PERCEPTIONS:
DEDUCTION MODULE

| i"f?g':s data set & initial generalized
IGCS _ constraint set

perceptions
explicitation
precisiation

IPS <—initial protoform set

initial goa terminal ot terminal
protoform BT protoform Sdilillil  gatg

set i \ ! | | set
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COUNT-AND MEASURE-RELATED RULES
*—crisp
QA’sareB’s

ant (Q) A’s are not B’s

QA’sareB’s

Q"2 A’s are “°B’s

most Swedes are tall , QAsareB’s
ave (height) Swedes is 7h ave (B|A) is 7C
.

Wa=(a,,..a,)

84/145 LAZ 6/27/2003
CONTINUED
Q, A's are (B&C)’s
Q, A'sareB’s
Q, A'sareC’s
(Q, +Q, -1) A’s are (B&C)’s
X'\':--‘.‘-:_
85/145 . LAZ 6/27/2003
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LAZ &/27/2003

PROBABILITY MODULE

X: real-valued random variable
g: probability density function of X
A, ..., A, A: perception-based events in U

Py, ..., P, P: perception-based probabilities in U

LAZ 6/27/2003
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CONTINUED

b, (v) = sup, (w, (Jg(u)w, (w)du) n--:

A, (1, g(u)p, (u)du)

Subject to:

y=] s 8(u)n, (u)de

88/145 b LAZ 6/27/2003

PROBABILITY MODULE (CONTINUED)

Xisp P Prob {Xis A} is P
Y=f(X) Prob {f(X) is B} is Q
Yisp f(P)
Xisp P XisuA
XY)isR Y=1X)
Yisrs § Y isu f(A)
89/145 . \ LAZ 6/27/2003
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PROBABILISTIC CONSTRAINT PROPAGATION RULE
(a special version of the generalized extension principle)

Iy gy, (wydu isr

I, gy (w)du s 73

, Hg(v) = sup  (1,( I o &), (u)du))
N\
subject to
= Jt- glu)p, (u)du
I v &(u)du =1
Xy
90/145 ' LAZ 6/27/2003

PROTOFORMAL DEDUCTION RULES

possibilistic
extension
principle

principle

91/145 LAZ 6/27/2003
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COMPUTATION WITH PERCEPTIONS
PROTOFORMAL RULE OF DEDUCTION

92145 LAZ 6/27/2003

PROTOFORMAL DEDUCTION RULE
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PROTOFORMAL DEDUCTION RULE

LAZ 6/27/2003

PROTOFORMAL CONSTRAINT PROPAGATION

P GC(p) PF(p)
Dana is young | Age (Dana) is young Xis A
t 4 $ T
Tandy is a few | Age (Tandy) is (Age (Dana)) Y is (X+B)
years older | +How 4

- than Dana

e 4 Age (Tandy) is (youngtfew)

85/145
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UM@JE

DEFINITION LANGUAGE

96/145 - LAZ 6/27/2003

HIERARCHY OF DEFINITION LANGUAGES

fuzzy-logic-based

} bivalent-logic-based

NL: natural language

B language: standard mathematical bivalent-logic-based language
F language: fuzzy logic language without granulation

F.G language: fuzzy logic language with granufation

PNL: Precisiated Natural Language

Note: the language of fuzzy if-then rules is a sublanguage of PNL

|
v

Note: a language in the hierarchy subsumes all lower languages
e . LAZ 6/27/2003

E
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SIMPLIFIED HIERARCHY

<« fuzzy-logic-based

(ZNET - ['ETe M <+— bivalent-logic-based

The expressive power of the B language — the standard
bivalence-logic-based definition language — is
insufficient

Insufficiency of the expressive power of the B language
is rooted in the fundamental conflict between bivalence

and reality
98/145

.- LAZ 6/27/2003

EVERYDAY CONCEPTS WHICH
CANNOT BE DEFINED REALISTICALY
THROUGH THE USE OF B

e check-out time is 12:30 pm
e speed limit is 65 mph

e itis cloudy

e Eva has long hair

e economy is in recession

e | am risk averse

® ...

f’\f;:;_v;_._
\§

99/145 ‘4\ LAZ 6/27/2003
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DEFINITION OF p: ABOUT 20-25 MINUTES
J(l\“
1
b-definition:
0 time
H
1
f-definition:
0 time
ﬂjl
" Uiaaes 8
f.g-definition: - {,_._ [ ™ ir },] .
0 20 25 \ime
P
PNL-definition; . 1:' __ Prob (Timeis A)is B
(bimodal distribution ‘l‘_'i‘I—| -F"

W\ } 6
1001145 .

A “time LAZ 6/27/2003

INSUFFICIENCY OF THE B LANGUAGE

Concepts which cannot be defined

e causality
e relevance
e intelligence

Concepts whose definitions are problematic

e stability
e optimality

e statistical independence

e stationarity

101145

LAZ 6/27/2003
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DEFINITION OF OPTIMALITY
OPTIMIZATION=MAXIMIZATION?

gamn  yes gainy unsure

d a X 0 7T aVyh S ’°Xx

gai no

o 'RgERNE X
« definition of bptimalx requires use of PNL

1021145 LAZ &27/2003
MAXIMUM ?
a) vx(f(x)<fa))
b) ~ (3 (f(x) > f(a))
> X
Y extension principle Y Pareto maximum

VA
/—f
0 X 0 X
b) ~ (Fx (f (x) dominates f(a))

103/145 LAZ 6/27/2003
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MAXIMUM ?
/—f (x)isA
0 X
/—f
B- = f=.2.}A"XB;
! f.ifXisA;thenYisB, i=1, ... n
0 X
A;
104/145 2 % LAZ 6/27/2003
EXAMPLE

- [ am driving to the airport. How long will it
take me to get there?

+ Hotel clerk’s perception-based answer:
about 20-25 minutes

+ “about 20-25 minutes” cannot be defined
in the language of bivalent logic and

probability theory
« To define “about 20-25 minutes” what is
needed is PNL
105/145 ] LAZ 6/27/2003
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EXAMPLE

PNL definition of “about 20 to 25 minutes”

Prob {getting to the airport in less than about 25 min} is unlikely
Prob {getting to the airport in about 20 to 25 min} is likely
Prob {getting to the airport in more than 25 min} is unlikely

granular 2
probability [T ""T1T T T T T 1
distribution

likely]

L SRR
”"’"“"”D e

4 I

— Time

106/145 h 25 LAZ 6/27/2003

PNL-BASED DEFINITION OF STATISTICAL
INDEPENDENCE

contingency table
slws | wm | Lo

2| ws | mm | M

o : »X 4| sis | sm | s
\v‘f}" v\‘v / 1 2 3

S M L
2 (M/L)= —““—lﬁﬁ_}“

+ degree of independence of Y from X=
degree towhich columns 1, 2, 3 are identical

'—» PNL-based definition

107145 LAZ 6/27/2003
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LYAPOUNOV STABILITY IS COUNTERINTUITIVE

= f(x)

Xo = O : equilibrium state

+ the system is stable no matter how large D is

108/145 " LAZ 6/27/2003

PNL-BASED DEFINITION OF STABILITY

e a system is F-stable if it satisfies the fuzzy
Lipshitz condition

|| Ax < F|| Ax, ||
Y fuzzy number
sinterpretation

degree of stabiffthegme to which fis in S MIFSAI

108/145 LAZ 6/27/2003
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F-STABILITY

< By — Gl

o 4 || Ax ||
/s ]
e 7
s D
'd -
y s
/'// = 1
h .
|| Ax, ||
1101145 A LAZ 6/27/2003
HIGHER-ORDER CONCEPTS

e What is not widely recognized is that some
seemingly simple concepts, e.g., cluster and
edge, are hard to define because they are
higher-order concepts.

e Informally, a concept is of order (level) k if its
denotation is a set of order k. A set whose
elements are points is of order one. A set
whose elements are sets of order one is of
order two, eftc.

111145 L LAZ 6/27/2003
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CONTINUED

e There are four categories of second-order
concepts: (1) b.b-concepts, |.e., bivalent
(crisp) concepts whose instances are
bivalent sets, e.g., convex set; (2) b.f-
concepts, l.e., bivalent concepts whose
instances are fuzzy sets, e.g., convex fuzzy
sets; (3) f.b-concepts, l.e., fuzzy concepts
whose instances are bivalent sets, e.g., small
squares; and (4) f.f-concepts, l.e., fuzzy
concepts whose instances are fuzzy sets.
The concepts of cluster and edge are
examples of f.f-concepts. That is why they
are hard to define.

1121145 b LAZ 6/27/2003

INTERPOLATION OF BIMODAL DISTRIBUTIONS
Py

g(u) probability density of X

hlm._

A, A, A An
p;is P, : granular value of p,, i=1, ..., n
(P;,A),i=1,...n aregiven
A is given
(?P, A)

113145 L LAZ 6/27/2003
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INTERPOLATION MODULE AND PROBABILITY
MODULE

Prob {(XisA}isP;, ,i=1,..,n
Prob {Xis A} is Q

Mo(v)=sup,(p, (I, (0)g(u)du) n---A

o, T, (T, (u)g(u)du))

sab_ject to
| L’T = .[ }J’A ( u ) g ( Hu ) (IH
| %

X\
1141145 k LAZ 6/27/2003

PROBABILISTIC CONSTRAINT PROPAGATION RULE
(a special version of the generalized extension principle)

o gp wydu  is R
Iy g(u)uy(wydu s 7s
Js(v) = sup , (1, (J,, g(u) e, (w)d))

A | subject to
| v=] v &lu)py (u)du
I o &)ydu=1

' 3 '
1151145 \\ LAZ 6/27/2003
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USUALILY SUBMUDULE

116

CONJUNCTION

Xis A XisuA

XisB
Xis ANB

XisuB
Xisr ANB

~determination of r involves interpolation of a bimodal
distribution

1171145 LAZ 6/27/2003
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USUALITY — QUALIFIED RULES

Xisu A
Xisun (not A)

Xisu A

Y=£(X)
Yisuf(A)

£ Jf A ()= sup upy=f( u'}(ﬂ_.-i ("))

118145 LAZ 6/27/2003

USUALITY — QUALIFIED RULES

XisuA
YisuB
Z=1(X)Y)

Zisu f(A, B)

#Z (H") = Supﬂ Mw= (i) (ou~l (") A ,H B (")
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EAIENSIUN PRINGIPLE MODULE

“i‘\."\a
120145 .- LAZ 6/27/2003

PRINC!PA}_ COMPUTATIONAL RULE IS
THE EXTENSION PRINCIPLE (EP)

point of departure: function evaluation
Y

f
f(a) —3/\

|
|
|
0 = > X

X=a

Y=1(X)
Y=f(a)

121145 A Y LAZ 6/27/2003
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EXTENSION PRINCIPLE HIERARCHY

EP(0,0)
function < » argument
EP(1,0 NEP(O1) ™. EP(0,1b)
‘\‘ 111111 ®
N T
P Extension Principle
s \
- 4 \
EP(20) EP(1,1b) EP(1,1) EP(0,2)
Dempster-Shafer
Mamdani (fuzzy graph)
1221145 LAZ 6/27/2003

VERSION EP(0,1)  (1965; 1975)

Y

XisA
Y=£(X)
Y=f(A)

1 (V) = SUP, (12,(4))
subjectto

123145 : LAZ 6/27/2003
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VERSION EP(1,1) (COMPOSITIONAL RULE OF
INFERENCE) (1965)

Y

Xis A
(X,Y)isR
YisA R

sty (V) = Supy (1a(tt) A 1 (u.v)

1241145 LAZ 6/27/2003

EXTENSION PRINCIPLE EP(2,0) (Mamdani)

Y
4 fuzzy graph (%)
o

]l
|

0 > X
(ifXis A, then Y is B)

X=a

Y = E;“A,—(a);\ B;
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(A) —

VERSION EP(2,1)
e
i3 i - /f*(granufatedﬂ
| e=dT ‘P__,
=
| _
I . > X
—y
A
Xis A
(X, Y)isR R =2;AB;
Yis L;m'/\ B,‘

m; = supy, (Ha(U) » Ha;(u)): matehing coefficient

1261145
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VERSION EP(1,1b) (DEMPSTER-SHAFER)

Xisp (p\uy + ... +p\u)

(X,Y) is R

Yisp (p/\R(u,y) + ... + p,\R(u,))

Yis a fuzzy-set-valued random variable

127145

Hruy (V) =Hg (u; V)
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VERSION GEP(0,0)

f(X) is A
g(x) is g(f-'(A))

(v) = sup,(u,(f(u))

H g(f(4)
subject to

1281145 : LAZ 6/27/2003

GENERALIZED EXTENSION PRINCIPLE

f(X) is A

g(Y) is B
Z=h(X.Y)

Zish (f'(A), g (B)

Ho(W) = sup,, (LA(f(u)) A pe(a(V))

subject to

w = h(u,v)

129/145 LAZ 6/27/2003
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U-QUALIFIED EXTENSION PRINCIPLE

Y
A [ A
e
T _'__| Hes |
e e
I |
I |
0 S 7 > X
A
IfXisA; thenYisuB,i=1,..,n
XisuA
Yisu X maB,;
m= sup;'fgﬁ(u)nymfu)): matching coefficient
Y
1301145 -
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LAZ 6/27/2003

81



Scientific and Technical Bulletin Series: Electrotechnics, Electronics, Automatic
Control and Computer Science, Vol. 2, No. 1, 2005, ISSN 1584-9198

THE ROBERT EXAMPLE

+ the Robert example relates to everyday
commonsense reasoning— a kind of
reasoning which is preponderantly
perception-based

- the Robert example is intended to serve as
a test of the deductive capability of a
reasoning system to operate on
perception-based information

132145 LAZ 6/27/2003

THE ROBERT EXAMPLE

e the Robert example is a sequence of
versions of increasing complexity in
which what varies is the initial data-set

(IDS)

version 1

IDS: usually Robert returns from work at
about 6 pm

questions:

q, : what is the probability that Robert is
home at t* (about t pm)?

g, : what is the earliest time at which the
probability that Robert is home is high?

133145 g LAZ 6/27/2003
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CONTINUED

version 2:

IDS: usually Robert leaves office at about
5:30pm, and usually it takes about 30min
to get home

94 9, : Same as in version 1

version 3: this version is similar to version 2
except that travel time depends on the
time of departure from office.

9, 9, $ame as version 1

1341145 b LAZ 6/27/2003

THE ROBERT EXAMPLE (VERSION 3)

IDS: Robert leaves office between 5:15pm and
5:45pm. When the time of departure is about
5:20pm, the travel time is usually about 20min;
when the time of departure is about 5:30pm, the
travel time is usually about 30min; when the time
of departure is about 5:40pm, the travel time is
about 20min

« usually Robert leaves office at about 5:30pm

- What is the probability that Robert is home at
aboutt pm?

135145 g LAZ 6/27/2003
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THE ROBERT EXAMPLE

Version 4

sUsually Robert returns from work at about 6 pm
Usually Ann returns from work about half-an-hour later
What is the probability that both Robert and Ann are
home at about t pm?

Py
1

1361145 b LAZ 6/27/2003

THE ROBERT EXAMPLE

Version 1.

My perception is that Robert
usually returns from work at
about 6:00pm

q, : What is the probability that
Robert is home at about t pm?

g, : What is the earliest time at
which the probability that
Robert is home is high?

137145 L LAZ 6/27/2003
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PROTOFORMAL DEDUCTION
THE ROBERT EXAMPLE

IDS p: usually Robert returns from work at about 6 pm.
TDS q:what is the probability that Robert is home at
about t pm?

1. precisiation:
p —— Prob {Time (Robert returns from work is
about 6 pm} is usually
g — Prob {Time (Robert is home) is about t pm}
is ?D
2. calibration: y ., ...;,s M+, t* = about t
3. abstraction:
p*—» Prob {XisA}is B
q* —— Prob {Yis C} is 7D

128145 LAZ 6/27/2003

CONTINUED

4. search in Probability module for applicable rules
(top-level agent)

Prob {Xis A} is B

Prob{YisClisD |[Hedielill

foUnd: Prob {X is A} is B Prob {Xis A} is B

Prob {Xis C}is D Prob {f(X) is C} is D

5. back to IDS and TDS. Go to WKDB (top-level agent)
= A/person is at home at time t if A returns before t
* Robertis home at t* =Robert returns from work before t

1391145 LAZ 6/27/2003
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THE ROBERT EXAMPLE

event equivalence

Robert is home at about t pm= Robert returns from work

before about t pm
before t*

t* (about t pm)

T t time

= fime of return

Before aboutt pm= <oabout t pm

140145 . LAZ 6/27/2003

CONTINUED

6. back to Probability module

Prob {Xis A})isB
Prob {XisC}isD

w,(v)=sup_(w, (I (u)g(u)du))
v = . (u)g(u)du

7. Instantiation : D =Prob {Robert is home at about 6:15}

X =Time (Robert returns from work)

A = 6*
B =usually
C=<6:15*
141145 Y LAZ 6/27/2003
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SUMMATION

KEY POINTS

e humans have a remarkable capability—a
capability which machines do not have—to
perform a wide variety of physical and
mental tasks using only perceptions, with no
measurements and no computations

e perceptions are intrinsically imprecise,
reflecting the bounded ability of sensory
organs, and ultimately the brain, to resolve
detail and store information

1421145 b LAZ 6/27/2003

CONTINUED

e imprecision of perceptions stands in the way
of constructing a computational theory of
perceptions within the conceptual structure
of bivalent logic and bivalent-logic-based
probability theory

e this is why existing scientific theories—
based as they are on bivalent logic and
bivalent-logic-based probability theory—
provide no tools for dealing with perception-
based information

143145 g LAZ 6/27/2003
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CONTINUED

e in computing with words and perceptions
(CWP), the objects of computation are
propositions drawn from a natural language
and, in particular, propositions which are
descriptors of perceptions

e computing with words and perceptions is a
methodology which may be viewed as (a) a
new direction for dealing with imprecision,
uncertainty and partial truth; and (b) as a
basis for the analysis and design of systems
which are capable of operating on
perception-based information

1441145 b LAZ 6/27/2003

STATISTICS

Count of papers containing the word “fuzzy” in the
title, as cited in INSPEC and MATH.SCI.NET
databases. (data for 2002 are not complete)

Compiled by Camille Wanat, Head, Engineering
Library, UC Berkeley, April 17, 2003

INSPEC/fuzzy Math.Sci.Net/fuzzy
1970-1979 569 443

1980-1989 2,404 2,466

1990-1999 23,207 5,472
2000-prosORNGI &, 49 7 o319

1970-present 34,925 10,700

145145 . g LAZ 6/27/2003
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Abstract

The paper presents an on-line identification method of the
operating regimes of the closed loop con-trollers. This method
uses as main tool the phase trajectory of the control error, which
is analysed in a qualitative manner. The operating domain is
divided into four regimes: variable, steady, oscillating and
unstable. This operation may be performed by fuzzy or by
interpolative controllers, on the base of general knowledge on
the PID controllers adjustment. A high quality self-adaptation of
the controllers may thus be obtained, covering all the possible
operation regimes.

Keywords: fuzzy interpolative controllers, adaptive control,
phase trajectory, heuristic control rules.
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1. INTRODUCTION

The control of the non-linear and time variable plants demands a
high quality self-adaptation, covering a wide range of possible
combinations of the parameters of the system. A conventional
control fails when it has to deal with contradictory clauses. For
instance the integrative effect of the PID controller may produce
notable overshoots and oscillations during the vari-able regimes
but in the same time its help is welcome during the steady ones.
The adjustment of a dc drive controller for ordinary speeds does
not matches at low speeds, because of to the non-linearity of the
friction load torque, which is growing when the speed is
decreasing.

However these contradictions may be managed by the help of the
fusion of several controllers each one designed for a specific
operating regime. The fuzzy fusion of the controllers became in
the last years a reliable solution to this problem.

The goal of this lesson is to offer a simple and reliable method
for the on-line identification of each regime that could possible
produce contradictions when adjusting a PID basic controller.
The lesson is based on a previous paper [8].

2. THE BASIC ASSUMPTIONS

The first question that comes in our mind when dealing with
barely controllable plants (highly nonlinear, death time,
mathematically unknown, etc.) is: “how would a human operator
control this plant?” Many specialists may disregard this heuristic
approach, but still it has fundamental advantages over the
numerical algorithms: it can always be applied! Of course the
performances may be not optimal, and a rigorous solution to the
stability problem is not possible, but in turn the costs of the
development of new products is getting lower and special
applicative measures against instability can always be
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considered. And nevertheless, the accumulation of experimental
facts about the heuristic controlled systems is a basic condition
for the developing of further numerical algorithms.

The basic assumptions that we will take in account are the next
ones:

e The PID is the fundamental control algorithm since, in a
general way of speaking, it can handle the present (P), the
history (I) and the future (D) of the evolution of the system. The
expert knowledge of the PID adjustment offers reliable control
rules for the most part of the possible control applications.

e The self-adaptation is strictly necessary for highly nonlinear
and/or time variable plants.

e A very attractive adaptation tool for the on-line control is the
2D phase trajectory of the control error € = f(€) (the dependence
between the change of error € and the error €). The phase
trajectory of the error is a fundamental tool, which has a signifi-
cant weight in the elaboration of the control decisions by the
human operators.

e The adaptive strategy will be a heuristic one, the only one
that is able to cope with the highly nonlinear systems.

e The fuzzy logic is a basic tool that allows us to cope with the
specific incertitude of the complicated nonlinear systems and
with the qualitative or heuristic approaches [6], [7].

e The fuzzy fusion of the controllers or only of the adaptive
part of the controllers is necessary for the management of the
contradictions.

e The fuzzy controllers may be developed by a linguistic
method. In order to obtain reliable implementations we will use
only fuzzy controllers that have a linear interpolation correspon-
dent (so called fuzzy-interpolative controllers). The prod-sum
Sugeno fuzzy inference and COG defuzzyfication is an obvious
first choice [3].
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3. THE FFSAIC ADAPTIVE CONTROLLERS

Any fuzzy controller is an interpolative one as well, and may be
implemented by means of a look-up table with linear
interpolation (similar to the Matlab-Simulink look-up table).
Such an implementation may be considered as a fuzzy
interpolative controller [3]. The main advantage of this kind of
structures consists in the easiness of the implementations (both
software or hardware). Interpolative controllers are able to
perform quite similarly to any other kind of controllers having in
the mean time the advantage of a low amount of calculations and
of the speed [4], [5]. The electronic implementations are feasible
in any possible technology, even in the analogical ones, since the
only important mathematic operation involved is the linear
interpolation.

Yet the look-up tables are strictly numerical tools, their
representation in the human mind being inadequate, especially
when using large or multidimensional tables. Thus the fuzzy
feature becomes useful mainly for methodological reasons. The
linguistic representation of the knowledge is revelatory for
humans, catalysing the developing stages of the applications.
The fuzzy controllers used in this paper will be fuzzy-
interpolative, and by consequence they will be implemented by
look-up tables.

We will consider as a recommendable tool a specific controller
structure which is operating by analysing the phase trajectory of
the error and which was designed having in mind the previous
assumptions. This structure will be called FSAIC (Fuzzy Self-
Adapted Interpolative Controller) [3] and it is shown in Fig.1.
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Gain P

Product

Direct controller
3D

>lé'z‘

W I » &,
4= »
=N
4~ »

Satl  Adaptive PD
fuzzy-interpolative controller

1

242541
Transfer Fen

Integrator

Fig. 1. AFSAIC controller

The characteristic features of this structure are the following:

® [SAIC has a variable structure. During transient regimes the
main controller is a PD one. During the steady regime an
integrative effect is gradually introduced, the structure becoming
a PID one. This functionality may be achieved with a 3D look-up
table having as inputs €, & and [e, the integrative of the error. The
different PD tables corresponding to the J€ dimension differ only
at the central rule, that is activated when € = zero and &€ = zero
[1], [2], [3]. Thus the integrative effect is gradually activated,
through a linear interpolation, only when steady regimes occur.
The block that fulfils this functionality in Fig. 1 is Direct
controller.

® A fuzzy-interpolative PD controller (corrector) induces the
adaptive feature. The adaptive controller is generating a mul-
tiplying correction (Gain) over the output of the main controller;
the multiplying correction is preferable to the additive one by
allowing a direct fuzzy fusion. The PD structure is chosen
because it can be matched with the phase trajectory of the error
(see Table 1, next page). The corresponding block in Fig. 1 is
Adaptive PD fuzzy-interpolative controller.
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In the following paragraphs we will focus on the adaptive
correction. The adaptive control rules could be grouped into four
clusters according to the next classification of the main oper-
ating regimes: variable (G1), steady (G2), oscillating (G3) and
unstable (G4). This point of view is not the only possible, other
classifications being as well productive. The clusters of rules
must respect in great shapes the next linguistic commitments:

¢ Gl: < Gain is medium and Integrative is zero >
¢ G2: < Gain is great and Integrative is great >

(1
¢ G3 & G4: < Gain is small and Integrative is zero >
The Integrative variable is generated by Direct controller.
The differences between G3 and G4 are not fundamental. If
necessary they may be separated by the help of supplementary
criteria, for example with the help of the product of the first and
second derivatives of the control error, that is positive for
unstable systems [3]. Anyway, Gain must be reduced in order to
reject the oscillations and/or to stabilize the system, in the sense
of the Nyquist stability criterion. Due to the non-linearity of the
plant, an optimal crisp value of the Gain would have no sense.
In the next table a possible structure of adaptive PD fuzzy-
interpolative corrector is presented.
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Table 1: An adaptive PD fuzzy-interpolative controller

€
T
ange of errorz negative Zero positive
error €
positive big Gl G1 Gl
positive small G3 G3 G3
Zero G1 G2 Gl —>¢
negative small G3 G3
negative big G1 G1 G1

A typical phase trajectory of the error is underlying its the
correspondence with the table.

4. THE FUZZY FUSION
OF THE ADAPTIVE CORRECTORS

When the blending of the rules is not possible or satisfactory, the
fundamental solution is the fuzzy fusion of the individual
controllers. The simplest fuzzy fusion operates according to the
weighted sum formula:

2 Hi(®)-uj)

i @)
B SO

1
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where u; is the output of the controller i and y; is the membership
value of the same controller. More complicated shapes for the
membership values functions may be used when imposed
performances must be reached.

A Fusioned Fuzzy Self-Adapted Interpolative Controller
(FFSAIC) is presented in Fig. 2.

Direct controller
3D 1) Saturation2 Plant
. :
Output F ] 242541

scaling
factor

3

+ Error D

YyVYVY

Reference

y

Evaluation/ A
Scaling EEISaturalion

\ 4
Sa!uration1E %
>
Ll

Adaptation2

»
>
»
>

Fuzzy fusio

Death
time O%(

LN
v

:’@ Product1

Adaptation3

Fig. 2. A FFSAIC controller

FFSAIC may include several different PD adaptive controllers
(correctors), each one dedica-ted to a specific operating regime.
In Fig. 2 a minimum FFSAIC variant is presented, having only
two correctors, corresponding to the regimes G1&G2 (which
may be covered by the same adaptive corrector) and G3. The
Table 2 controller may be applied in order to control the fuzzy
fusion of three correctors. The heuristic meanings of the
identifications of G1 and G3 are obvious, while the identification
of G3 (oscillations) is linked to the points € = 0: if the error is
zero (in the linguistic sense) the regime is steady, if not, the
regime is oscillatory.
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Table 2: A regime identification fuzzy-interpolative controller

change of
erroré | negative Zero positive
error

positive big G1 G1 G1
positive small G1 G3 G1
Zero Gl G2 Gl
negative small Gl G3 Gl
negative big G1 G1 G1

5 COMPARING FSAIC TO LINEAR PID.
SIMULATIONS RESULTS

The next examples have only an illustrative goal. Some detailed
results may be found in [3].

Fig. 3 presents a comparison of FSAIC and linear PID per-
formances for the case of an oscillatory plant, with the transfer
function

Phase trajectories for the plant 1/(ss+3*sz+3*s+1)

change of error

|

1

-1 -0.5 0  grror 95 1 1.5
Fig. 3.The performance of FSAIC comparing to PID
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1
; (3)

H(s)= 5
s” +3-8“+3-s+1

Fig. 4 presents the time performances of FFSAIC when
controlling four different plants:

1
HI(S)ZZ— “4)
s“+2-s+1
£-0.0255 “
H (5)=—0
27§22 402541
700255 ©
H,(8=—
3 s2 £20-s+1
00255 0
H , (s) =
4 s3+3-s2+3-s+1

If linear PID controllers would control them, the tested plants
would produce extremely different responses, one of them
being fully unstable.

6 CONCLUSIONS

The identification of the operating regime of the closed loop
control systems may be obtained by the means of the qualitative
analyse of the phase trajectory of the control error. Adaptive
actions based on this approach are able to improve the control of
highly nonlinear and/or important dead times plants.

This analysis may be achieved with the help of fuzzy-
interpolative controllers. A family of fuzzy self-adaptive
interpolative controllers FSAIC is designed to implement this
kind of operation. The adaptive part of FSAIC is a fuzzy-
interpolative PD corrector.
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The regime identification may ensure a high quality adaptation
even in the case of contradictory clauses. The tool that can cope
with the contradictory possible regimes (FFSAIC) is obtained by
the fuzzy fusion of several adapting FSAIC correcting
controllers. The on-line control of the fuzzy fusion is achieved as
well by a fuzzy-interpolative controller.

The FFSAIC controller operating over 4 different plants, demanding contradictory control

0 10 20 30 40 50 60
time [s]
Fig. 4. Tne FFSAIC with the on-line identification of the operating regime

FFSAIC can also control systems that are suffering unstabilising
influences.

Only two possible applications of FSAIC are revealed so far:
the air-conditioning [1] and the ABS braking [2] of the
railway coaches. Further research could produce important
applicative achievements, since the method is a versatile and
easy to implement one.
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Abstract

The paper presents a fuzzy method in fault detection and
diagnosis. This method provides a systematic framework to
process vague variables and vague knowledge. The supervision
of the process requires the treatment of quantitative and
qualitative knowledge. Here fuzzy logic approaches are
especially attractive for symptom generation with fuzzy
thresholds, linguistically described observed symptoms and the
approximate reasoning with multi levele fuzzy rule based systems
for fault symptom tree structures.
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1. INTRODUCTION

1.1. General Things

In the field of control engineering new topics continue to flourish
and develop. In common with general scientific investigations
the new concept of fault detection and process monitoring
emerge as a new growth area in process control. This innovative
concept coalesces into a new sub-discipline. A little maturity has
been acquired by the new concept. Archival publications and
monographs may be study in the international scientifically
literature. The reason of developing fault detection and diagnosis
is based on new real time instrumentation technologies in
manufacturing plant installations. Process operators are using
process data to minimize plant downtime and optimize plant
operations. The traditional routes to fault detection were model
based and them the process has to be well understood. An
alternative group of methods has emerged which do not require
the use of an explicit model. Model-free and non-parametric
methods for fault detection, process optimization and control
design are in current development.

Many technical processes are operating now under automatic
control based on the progress of control theory. A general
scheme for the organization of process automation tasks in
several levels is presented in fig. 1 [Ise95].

The measurement and manipulation takes place at in the lowest
level. The next level contains feedforward and feedback control.
Here some variables u, y are adjusted according to conditions v
or reference variables w. The second level contains supervision;
it is the monitoring level, which serves to indicate undesired or
unpermitted process (fault detection) states and to take
appropriate actions (based on fault identification and diagnosis)
as process recovery, fail-safe, shut-down, triggering of
redundance systems or reconfiguration schemes. The higher
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levels may perform tasks such as optimization, coordination or
general management in order to meet economic demands or
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Fig. 1. The block diagram of multilevel process automation

scheduling. The lower levels need a fast reaction and act locally
and the higher levels are dedicated to tasks that act globally.
Modern manufacturing facilities are large scale, highly complex
and operate with a large number of variables under closed-loop
control. An early accurate fault detection and diagnosis for these
plants can minimize downtime, increase safety of plant
operations and reduce manufacturing costs. Plants are becoming
more heavily instrumented, resulting in more data becoming
available for use in detecting and diagnosing faults. Classical
methods have a limited ability to detect and diagnose faults in
such multivariable processes. This has led to a surge of
scientifically effort to develop more effective process monitoring
methods. To apply these methods in the real industrial systems a
large amount of research must be done.

The domain of control of electrical drives is a large file of
application for the fault detection and diagnosis techniques. This
domain is appropriate for practicing engineering in process
monitoring. Numerous and ample simulators for a large scale
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electrical drives applications may be developed. Data from the
process — electrical drive — may be collect and applied to the
monitoring techniques to detect, isolate and diagnose various
fault. The process monitoring techniques can be modeled,
simulated and implemented using commercial software as
Matlab and Simulink [Bea94, Che92, Lot93, Vol2’0/1, 2].

These researches are focused on the approach based on fuzzy
logic and neural networks, as new concepts developed versus the
conventional concepts as statistical quality control, analytical
methods, knowledge base methods, canonical variant analysis or
Fisher discriminate analysis.

In the control of the electrical drives there is a large push to
assure higher security of the electrical drive, to reduce electrical
machine rejection rates and to satisfy the increasing stringent
safety of the entire process controlled by the electrical drives and
its environment. To meet the higher standards, the electrical
drives contain a large number of variables operating under
closed-loop control. The standard process controllers, for
example PID controllers, are designed to maintain satisfactory
operations by compensating for the effects of disturbances and
changes occurring in the process. While these controllers can
compensate for many types of disturbances, there are changes in
occurring in the electrical drives that the controllers cannot
handle adequately. These changes are called faults. More
precisely, a fault is defined as a no permitted deviation of at least
one characteristic property or variable of the system (resistance,
inductance, moment of inertia, friction coefficient, voltage, flux
or current, or quality criteria, as for example the overshoot).

The types of faults occurring in industrial systems include
process parameter changes, disturbance parameter changes,
actuator problems and sensor problems. Short circuit of the
motor resistance or friction coefficient rising are examples of
process parameter changes. A disturbance parameter change can
be an extreme change of in the load torque or in the ambient
temperature. An example of an actuator problem is a destroyed
transistor in the power converter, and a sensor producing biased
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measurements is an example of a sensor problem. To ensure that
the process operations satisfy the performance specifications, the
faults in the process need to be detected, diagnosed and removed.
These tasks are associated with process monitoring. Different
methods were developed for process monitoring.

The goal of process monitoring is to ensure the success of the
planned operations by recognizing anomalies of the behavior.
The information not only keeps the plant operator and
maintenance personnel better informed of the status of the
process, but also assists them to make appropriate remedial
actions to remove the abnormal behavior from the process. As a
result proper process monitoring, downtime is minimized, safety
of plant operations is improved and manufacturing costs are
reduced. As industrial systems have become more highly
integrated and complex, the faults occurring in modern processes
present monitoring challenges that cannot be treated with
conventional methods. The weakness of the linear methods of
detection and diagnosis have led to a surge of research
concentrated to the methods of the artificial intelligence as fuzzy
logic and neural networks. The growth of the research activity
can also be explained by the fact that industrial systems are
becoming more heavily instrumented, resulting in larger
quantities of data available for use in process monitoring and that
modern computers are becoming more powerful. The availability
of data collected during various operating fault conditions is
essential to process monitoring. The storage capacity and
computational speed of modern computers enable process
monitoring algorithms to be computed when applied to large
quantities of data [ChiO1].

The electrical drives, controlled in real time with digital
equipments and software of high performances, are at this
moment suitable for the implementation of such monitoring
algorithms [Har94].
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1.2. Process Monitoring Procedures

The four procedures associated with process monitoring are
[ChiO1]: fault detection, fault identification, fault diagnosis and
process recovery.

Fault detection is determining whether a fault occurred. Early
detection may provide invaluable warning on emerging
problems, with appropriate actions taken to avoid serious process
upsets.

Fault identification is identifying the observation variables most
relevant to diagnosing the fault. The purpose of this procedure is
to focuses the plant operator’s and engineer’s attention on the
subsystems most pertinent to the diagnosis of the fault, so that
the effect of the fault can be eliminated in a more efficient
manner.

Fault diagnosis is determining which fault occurred, in other
words, determining the cause of the observed out-of-control
status. It can be more specifically defined as determining the
type, location, magnitude and time of the fault. The fault
diagnosis procedure is essential to the counteraction or
elimination of the fault.

Process recovery, also called intervention, is removing the effect
of the fault and it is the procedure needed to close the process
monitoring loop. Whenever a fault is detected, the fault
identification, fault diagnosis and process recovery procedures
are employed in the respective sequence, otherwise, only the
fault detection procedure is repeated.

The schema of the process monitoring is presented in fig. 2.
Whenever a fault is detected, the fault identification, fault
diagnosis and process recovery procedures are employed in the
respective sequence, otherwise only the fault detection procedure
is repeated.

It is not necessary to implement all four procedures in a process
monitoring. For example, a fault may be diagnosed (the
procedures of fault diagnosis) without identifying the variables
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immediately affected by the fault (the procedure of fault
identification) and recover the normal operation. Often, the goal
of process monitoring is to incorporate the plant operators and
engineers into the process monitoring loop efficiently rather then
to develop an entire automat monitoring scheme.

Ma Fault Tes | Fault Fault Process

Detection Identification Diagnosis Recovery

Fig. 2. The schema of the process monitoring loop

After a fault occurs, the process may be recovered, reconfigured
or repaired and returning to the control strategy. Once a fault has
been properly diagnosed the optimal approach to counteract the
fault may not be obvious. A feasible approach may be the return
to the standard process control strategy. Several methods were
developed to evaluate the controller performance and these can
be used to determine to which control strategy need to be
returned to restore the satisfactory performances. For example, in
the case of a sensor problem, a sensor reconstruction technique
can be applied to the process to restore the control operations.
Even the process recovery is an important and necessary part of
the process monitoring loop, it is not the focus of this approach.
All the phases presented in the above scheme may be
implemented on the control systems of the electrical drives.

1.3. Process Monitoring Measures

The process surveillance contains one or more measures, based
on different theories, as: statistics, pattern classification and
system theory. These measures represent the behavior of the
process. The idea is to convert on-line data collected from the
process into a few measures and to assist the operators in
determining the status of the operations and diagnosing the
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faults. For fault detection limits must be placed on the measures.
A fault is detected whenever one of the evaluated measures is
outside the imposed limits. In this way, a measure is able to
define a wrong behavior of the process accordingly the out of
control status. In these measures the values of the variables can
be compared with the values of other variables to determine the
variable most affected by the fault. Developing and comparing
measures that accurately represent the different faults of the
process can also diagnose faults.

The goal of process monitoring is to develop measures that are
maximally sensitive and robust to all possible faults. Faults are
manifested in several ways and no the all faults may be detected
and diagnosed with only a few measures. Each measure
characterizes a fault in different manner; one measure will be
more sensitive to certain faults and less sensitive to other faults
relative to other measures. This motivates using multiple process
monitoring measures, with the proficiency of each measure
determined for the particular process and the possible faults.
Possible monitoring measures can be classified as being
associated with one or more of approaches [ChiO1]: data driven,
analytical and knowledge-based. The data driven measures are
derived directly from process data. Modern industrial systems as
the electrical drives are large-scale systems. They are equipped
with a lot of instruments, which produce large amount of data.
Too much information is beyond the capability of an operator to
assess the process operations from observing the data. The data
driven techniques have the ability to transform the high-
dimensional data into a lower dimension, in which the important
information is captured. The improvement of a large-scale
process monitoring scheme may be done using statistical
techniques. The disadvantage of the data driven techniques is
that their proficiency is highly dependent on the quantity and
quality of the process data.

The analytical approach wuses mathematical models often
constructed from the primary mathematical and physical laws of
the processes. The analytical approach is applicable to
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information rich systems, with available satisfactory models and
enough sensors. Most analytical measures are based on
parameter estimation, observer based design and parity relations.
The applications of the analytical approach are made on systems
with a small number of inputs and outputs and states. Because
the analytical approaches need detailed models in order to be
effective it is difficult to apply these measures to large-scale
systems. Whenever, the analytical measure may be apply to the
electrical drives, because they have a small number of inputs and
outputs and also they have good state space models. The main
advantage of the analytical approach is the ability to incorporate
physical understanding of the process into the monitoring
strategy. In other words, when detailed models are available, the
analytical measures have good performances. The electrical
drives are systems suitable for application of the analytical
measures. Models of the electrical are developed.

The knowledge-based approach uses qualitative models to
develop process monitoring measures. The knowledge-based
approach is well suited for systems with non-available detailed
models, with complex and nonlinear models. The knowledge-
based measures are based on causal analysis, expert systems or
pattern recognition. Like the analytical approach the applications
of the knowledge-based measures are on system with a small
number of inputs, outputs and states. The electrical drives are
non-linear systems with complex models. For an easier
application of the knowledge-based measures software packages
must be developed.
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1.4. Process Monitoring Methods
1.4.1. Fault Detection Methods

Different model based fault detection methods were developed in
the last 25 years, by using mathematical model. The tasks consist
in the detection of faults in the technical process, actuators and
sensors by measuring the available input and output variables u
and y. Fig. 3 presents the scheme of such a detection in a control
system.

Faults Faults
H Controller }—HC Actator }7:;4){ Process }—y—r
r
Fault | Sensor |

Dretector

Fig. 3. The scheme of fault detection in a control system

The process is considered to operate inn open loop. A distinction
can be made between static and dynamic, linear and nonlinear
process models.

Several important model based fault detection methods are used.
Parameter estimation presents changes of parameter estimates.
State estimation presents the changes of states estimates or
output errors. Parity equations offer the output error or
polynomial error.

The measured or estimated quantities like signals, parameters,
state variables, or residuals are usually stochastic variables with
mean value and variance, as normal values for the non-faulty
process. Analytical symptoms are obtained as changes with
reference to the normal values. If a fixed threshold is used, a
compromise has always to be made between the detection of
small faults and false alarms because of short term exceeding.
Methods of change detection, which estimated the change of the
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mean, value and relate it to the standard deviation may improve
the decision. Membership fuzzy logic functions may be used to
specify the universe of discourse for a such approach.

1.4.2. Fault Diagnosis Methods

The task of fault diagnosis consists of determining the type of
fault with as much possible such as the fault size, location and
time of detection. The diagnosis procedure is based on the
observed symptoms of the process.

Based on heuristic knowledge and inference mechanism for
diagnosis expert systems are used to imitate the reasoning of
human experts when diagnosing faults. The experience from a
domain can be formulated in terms of rules, which can be
combined with the knowledge from the physical-mathematical
laws that are ruling the process or with a structural description of
the system. Expert systems are able to capture human diagnostic
reasoning that are not expressed into mathematical models.
Pattern recognition techniques use associations between data
patterns and fault classes without an explicit modeling of internal
process states or structures. Examples are artificial neural
networks and self organizing maps. These techniques are related
to the data driven techniques in terms of modeling the relation
between data pattern and fault classes. Neural networks are black
boxes that learn the pattern entirely from the training sessions
[ChiO1].

All methods based on data-driven, analytical and knowledge
based approaches have their advantages and disadvantages, so
that no single approach is best for all applications. Usually the
best process monitoring scheme uses multiple statistics or
methods for fault detection, identification and diagnosis. A good
approach is to incorporate several techniques for process
monitoring as neural network with fuzzy logic and expert
systems. This can be beneficial also in the application of the
electrical drives.
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2. FUZZY LOGIC APPLICATIONS
FOR PROCESS MONITORING

2.1. General Things

Many control systems are based today on fuzzy logic. The
development of the fuzzy control theory offers alternative
techniques for process monitoring strategies, which describes
human reasoning in linguistic form. The fuzzy supervision
knowledge-based may replace a human operator. Fuzzy logic
provides a systematic framework to process vague variables and
knowledge. There are some automation functions for which the
fuzzy logic may offer attractive possibilities and advantages.

The main elements in the process information, as: input
variables, the process classes, the automation functions and the
output variables have different degrees of vagueness. The crisp
information may be treated with fuzzy logic.

With regard to the input signals usual measurement equipment is
designed to deliver signals with precise mean values and low
standard deviations. Low cost sensors may have imprecise
outputs with biased values and large standard deviations. Non
directly measurable variables can only be calculated or
estimated based on other measurement variables and analytical
models and therefore imprecise to some extent. Also linguistic
values of a human operator may be processes. Hence, the degree
of precision and imprecision of the input variables may vary
within fairly broad ranges.

The description of the static and dynamic behavior in form of a
mathematical models plays a crucial role as well for the design
of the technical processes as for a systematic design of high
performance control systems. Processes from different process
classes (mechanical, electrical, thermal, chemical and biological)
may be described using basic physical- mathematical principles.
Theoretical modeling can be applied using energy balance
equations, state equations and phenomenological laws. The
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structure of the mathematical model is obtained with lumped
parameter or distributed parameter (ordinary or partial
differential equations). By this way quantitative models based on
physical laws result and one can distinguish the following cases
[Ise95]. Analytical process models, they are quantitative models.
If the structure is known, the parameters can be determined
experimentally by parameter estimation and identification
methods. Quantitative process models result from proper
combination of theoretical and experimental modeling. If
physical laws in the form of equations cannot express the
internal behavior, as for not well-defined process, some
qualitative information on the causalities may be expressed as
rules: If <condition> then <conclusion>. The condition part
contains as inputs the memberships of facts to the premise and
possibility their logical connection by AND, OR and NOT. The
conclusion part describes the logical consequence on the output.
Then one can distinguish heuristic process models (qualitative
models) [Ise95].

The functions of the process automation (control, supervision,
management, man-machine interface) are usually organized
according to the levels shown in fig. 1. For supervision the basic
task is to check if variables exceed tolerances. These tolerances
are usually a compromise between small values to early detect
faulty behavior and large values to avoid false alarms subject to
normal process fluctuations. In reality these tolerances are not
crisp but fuzzy variables. Moreover, in many cases fault
diagnosis means to treat vague process knowledge and therefore
to apply rules [ChiO1, Ise95].

The man-machine interface is designed for human interaction.
Basic tasks of the human operator are higher-level tasks as
supervision, management and redundancy for all control
functions. The actions of human operators are based on
qualitative knowledge and many be better describes by rules than
by precise algorithms. The information in process automation
generally changes from using precise algorithms at the lower
levels to using more rules at the higher levels.
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Actuators with electrical, pneumatic or hydraulic drives need
crisp inputs. Qutput variables to the human operators through the
man-machine interface can be either crisp.

2.2. Knowledge based fault detection

Within automatic control of technical systems supervisory
functions serve to indicate undesired or unpermitted process
states and to take appropriate actions in order to maintain the
operation and to avoid damages or accidents. Following
functions can be distinguished [Ise95]:

Monitoring: measurable variables are checked with regard to
tolerances and alarms are generated for the operator;

Automatic protection: in the case of dangerous process state, the
monitoring function initiates automatically an appropriate
counteraction;

Supervision with fault diagnosis: based on measured variables
features are calculated, symptoms are generated via change

Faultz
Process
Measured
variables
Analytical Symptom
lnowledge generation
Symptorns
Heurstic Fault
lnowledge diagnosis
l Diagnosed

faults
Fig. 3. Scheme of knowledge-based fault detection and diagnosis

detection, a fault diagnosis is performed and decisions are made
for counteractions.
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The diagram of knowledge based fault detection and diagnosis is
presented in fig. 4. The main tasks can be subdivided in fault
detection by symptom generation and fault diagnosis. The
symptom generation can be analytic or heuristic.

Analytical symptom generation is based on analytical knowledge
on the process, used to produce quantitative analytical
information. Based on measured process variables a data
processing has to be performed to generate first characteristic
values by: -Limit value checking of directly measurable signals.
Characteristic values are exceeding signal tolerances. —Signal
analysis of directly measurable signals by use of signal models
like correlation functions, frequency spectra, autoregressive
moving average models. Characteristic values are amplitudes,
frequencies or model parameters. —Process analysis by using
mathematical process together with parameter estimation, state
estimation and parity equation methods. Characteristic values are
parameters, state variables or residuals. These features are
compared with the normal features of the non-faulty process and
methods of change detection and classification are applied. The
resulting changes of the described direct measured signals, signal
models or process models are then analytical symptoms of faults.
Heuristic symptom generation is in addition to the symptom
generation with quantifiable information and they can be
produce by using qualitative information from human operators.
Through human observation and inspection heuristic
characteristic values in form of special noise, colour, smell,
vibration, wear and tear etc. are obtained. The process history in
form of performed maintenance, repair, former faults and
lifetime, load measures constitute a further source of heuristic
information. Statistical data achieved from experience with the
same or similar processes can be added. By this way heuristic
symptoms can be represented as linguistic variables (small,
medium, large) or as vague numbers (around a certain value).

An example for a stochastic symptom treated with fuzzy logic is
presented in fig. 5.
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x faulty * *

Figure 5. Fuzzy membership approach for a stochastic variable x(r)

A fixed threshold xm.x is used and a compromise between the
detection of small faults and false alarms must be made. A
triangle membership function m(x) is specified with the center as
the mean and the lower width due to a Gaussian distribution 68%
or 95% of all values lie within those intervals. A combined
symptom representation of the mean and the standard deviation
is obtained. By matching the current value m(x) with the
symptom’s membership function we obtain a gradual measure
for exceeding a fuzzy threshold.

For the processing of all symptoms in the inference engine it is
advantageous to use a unified representation. One possibility is
to present the analytic and heuristic symptoms with confidence
numbers c(x)€[0, 1] and treatment in the sense of probabilistic
approaches known from reliability theory [...]. Another
possibility is the representation as membership function
m(x)e[0, 1] of fuzzy sets (fig. 6).

By these fuzzy sets and corresponding membership functions all
analytic and heuristic symptoms can be represented in a unified
manner within the range [0, 1]. These integrated symptoms are
the inputs for the inference mechanism, presented in the
following chapter.

For establish heuristic knowledge bases for diagnosis there are
several approaches. In general specific rules are applied in order
to set up logical interactions between observed symptoms
(effects) and unknown faults (causes). The propagation from
appearing faults to observable symptoms in general follows
physical cause-effect relationships where physical properties and
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variables are connected to each other quantitatively and also as
functions of time. The underlying physical laws are frequently
not known in analytical form or too complicated for calculations.
Therefore heuristic knowledge in form of qualitative process
models can be expressed in form of IF-THEN rules: IF (premise)
THEN (conclusion).

The condition part (premise) contains facts in the form of
observed symptoms Ax as input and the conclusion part includes
events and faults as a logical cause of the facts. This procedure
results in fault symptom trees, relating symptoms to events and
faults. Then symptoms or events are associated by AND and OR
operators.

decrease mcrease
less less
e normmal
1 muCh much
0 xq x

Fig. 6. Examples of membership
functions for svmbntoms

Based on the available heuristic knowledge in form of heuristic
process models and weighting of effects different diagnosis
forward and backward reasoning strategies can be applied.
Finally the diagnosis goal is achieved by a fault decision, which
specifies the type, size and location of the fault as well as its time
detection. By using the strategy of forward chaining a rule, the
facts are matched with the premise and the conclusion is drawn
based on the logical consequence. Therefore with the symptoms
Ax as inputs the possible faults are determined using the heuristic
causalities. In general the symptoms have to be considered as
uncertain facts. Therefore a representation of all observed
symptoms as membership function m(x) of fuzzy sets in the
interval [0, 1] is feasible, especially in unified form.
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3. THE BASIC STRUCTURE
OF A FUZZY ENGINES FOR FAULT DIAGNOSIS

A fuzzy inference engine has the basic structure from fig. 7.

It contains the fuzzification and defuzzification interfaces and the
inference based on fuzzy rules. The input u and output y
information is crisp. The fuzzification interface offers a fuzzy
information A4 of the inputs u. The inference offers also a fuzzy
information B for the outputs y. The inputs u are symptoms and
the outputs y are diagnosis of faults.

Ll I R B . ¥
—— Fuzzification Inference Defuzzification

Rule

base Fuzzy systemn

Fio. 7. The structure of a fuzzv svstem for fault diagnosis

An example of an inference based on min-max method is
presented in fig. 8.

Fig. 8. The min-max inference

The most used defuzzification is based on the center of gravity
method, presented in fig. 9.
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Approximate reasoning with fuzzy logic is made with the
structure from fig. 7 of a fault symptom tree. A fuzzy rule based

Fig. 9. Defuzzification

system with multiple levels of rules can be established. The
symptoms u=Ax are represented by fuzzy sets 4, with linguistic
meanings like “normal N, “less increased LI”, “much increase
MT etc.

In contrast with fuzzy control fuzzy fault diagnosis differs by:

- inputs are mostly no crisp measurements, but detected
symptoms represented as fuzzy sets;

- not only one level or rules does exist, but mostly several levels;
- frequently it is difficult to specify the membership functions of
the intermediate events because of very vague knowledge.

The approximate reasoning follows the steps describe in fig. 7:
fuzzyification, rule activation with evaluation by the
compositional rule of inference and defuzzification.

The dimension of the fuzzy rule base is given by: number of
symptoms, number of rules per level, number of levels and
number of faults.

The overall dimension may therefore blow up strongly even for
small componets or processes. Therefore the software
implementation is important. Mainly two procedures to perform
the reasoning are known: sequential rule of activation and
multiple rule activation [Ise95].

Top reduce the computation effort simplifying assumptions may
help.
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4. CONCLUSION

In the fault detection and diagnosis fuzzy logic provide a
systematic framework to process vague variables and vague
knowledge. As the vagueness in fault detection is high the
potential of fuzzy logic grow to higher levels.

The supervision of the process requires the treatment of
quantitative and qualitative knowledge. Here fuzzy logic
approaches are especially attractive for symptom generation with
fuzzy thresholds, linguistically described observed symptoms
and the approximate reasoning with multi levele fuzzy rule based
systems fro fault symptom tree structures.
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