

Theory and Applications of Mathematics & Computer Science

(ISSN 2067-2764) http://www.uav.ro/applications/se/journal/index.php/tamcs

Theory and Applications of Mathematics & Computer Science 1 (2) (2011) 1-6

An Application of Pescar's Univalence Criterion

Nicoleta Ularu^{a,*}, Daniel Breaz^b

"University of Piteşti, Department of Mathematics and Computer Science, Târgul din Vale Str., No.1, 110040 Piteşti, Argeş, Romania.

b" I Decembrie 1918" University of Alba Iulia, Department of Mathematics and Informatics, N. Iorga Str., No. 11-13, 510009, Alba Iulia, Alba, Romania.

Abstract

For the operator $F_{\alpha}(z) = \left(\alpha \int_{0}^{z} t^{\alpha-1} f'(t) dt\right)^{\frac{1}{\alpha}}$, Pescar has obtained a generalization of Ahlfor's and Becker's criterion of univalence. In this paper we generalize the Pescar's univalence criterion for other two operators $G_{\alpha_1,\dots,\alpha_n,n}(z)$ and $J_{\gamma_1,\dots,\gamma_n}(z)$ and we obtain new univalence conditions of analytic functions in the unit disk $\mathcal{U} = \{z \in \mathbb{C} : |z| < 1\}$.

Keywords: Analytic, univalent, unit disk, Ahlfor's and Becker's criterion of univalence. 2000 MSC: 30C45.

1. Introduction and preliminaries

Let $\mathcal{U} = \{z : |z| < 1\}$ the unit disk and \mathcal{A} the class of all functions of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
 (1.1)

which are analytic in \mathcal{U} and satisfy the condition

$$f(0) = f'(0) - 1 = 0.$$

Theorem 1.1. (Mocanu et al., 2009) (Maximum Modulus Principle) Let f be a nonconstant analytic function on a connected open set U. Then |f| cannot attains maximum in U, i.e. there exists $\alpha \in U$ such that $|f(a)| \ge |f(z)|$ for all $z \in U$.

The next lemma is a result given by J. Becker (Becker, 1972):

Email addresses: nicoletaularu@yahoo.com (Nicoleta Ularu), dbreaz@uab.ro (Daniel Breaz)

^{*}Corresponding author

Lemma 1.2. (Becker, 1972) If $f(z) = z + a_2 z^2 + \dots$ is analytic in \mathcal{U} and

$$(1 - |z|^2) \left| \frac{zf''(z)}{f'(z)} \right| \le 1$$

for all $z \in \mathcal{U}$, then the function f(z) is univalent in \mathcal{U} .

L. V. Ahlfors (Ahlfors, 1973) and J. Becker (Becker, 1973) has obtain the next univalence criterion:

Theorem 1.3. ((Ahlfors, 1973) and (Becker, 1973)) Let c be a complex number, $|c| \le 1$, $c \ne -1$. If $f(z) = z + a_2 z^2 + \dots$ is a regular function in \mathcal{U} and

$$\left| c|z|^2 + (1 - |z|^2) \frac{zf''(z)}{f'(z)} \right| \le 1$$

for all $z \in \mathcal{U}$, then the function f is regular and univalent in \mathcal{U} .

V. Pescar in (Pescar, 1996) obtain an univalence criterion which is a generalization of Ahlfor's and Becker's criterion of univalence and is given in next theorem.

Theorem 1.4. (*Pescar*, 1996) Let α and c be complex numbers, Re $\alpha > 0$, $|c| \le 1$, $c \ne -1$. If $f(z) = z + a_2 z^2 + \dots$ is a regular function in \mathcal{U} and

$$\left| c|z|^{2\alpha} + (1 - |z|^{2\alpha}) \frac{zf''(z)}{f'(z)} \right| \le 1$$

for $z \in \mathcal{U}$, then the function

$$F_{\alpha}(z) = \left(\alpha \int_{0}^{z} t^{\alpha - 1} f'(t) dt\right)^{\frac{1}{\alpha}} = z + \dots$$

is regular and univalent in U.

In (Pascu & Radomir, 1989) N.N. Pascu and I. Radomir has obtain:

Theorem 1.5. (*Pascu & Radomir*, 1989) Let β and c complex numbers, Re $\beta > 0$, $|c| \le 1$, $c \ne -1$ and $f(z) = z + a_2 z^2 + \dots$ be a regular function in \mathcal{U} . If

$$\left| ce^{-2t\beta} + (1 - e^{-2t\beta}) \frac{e^{-t} z f''(e^{-t} z)}{\beta f'(e^{-t} z)} \right| \le 1$$

holds for every $z \in \mathcal{U}$ and $t \geq 0$, then the function

$$F_{\beta}(z) = \left(\beta \int_{0}^{z} t^{\beta-1} f'(t) dt\right)^{\frac{1}{\beta}} = z + \dots$$

is regular and univalent in U.

We define the operators

$$G_{\alpha_1,\alpha_2,\dots,\alpha_n,n}(z) = \left(\left(\sum_{i=1}^n \alpha_i - n + 1 \right) \int_0^z \prod_{i=1}^n (g_i(t))^{\alpha_i - 1} dt \right)^{\frac{1}{\sum_{i=1}^n \alpha_i - n + 1}}$$
(1.2)

for $g_i \in \mathcal{A}$, $i = \overline{1, n}$ and

$$J_{\gamma_1,\gamma_2,\dots,\gamma_n}(z) = \left(\left(\sum_{j=1}^n \frac{1}{\gamma_j} \right) \int_0^z t^{-1} \prod_{j=1}^n (f_j(t))^{\frac{1}{\gamma_j}} dt \right)^{\frac{1}{\sum_{j=1}^n \frac{1}{\gamma_j}}}.$$
 (1.3)

for $f_j \in \mathcal{A}$, $j = \overline{1, n}$.

The operator $G_{\alpha_1,\alpha_2,...,\alpha_n,n}(z)$ is a generalization of an operator defined by Breaz et all in (Breaz et al., 2009).

2. Main results

Theorem 2.1. Let α_i and c complex numbers, $n \in \mathbb{N}$, $n \ge 1$, $i = \overline{1, n}$, $\operatorname{Re}\left(\sum_{i=1}^n \alpha_i - n + 1\right) > 0$, |c| < 1, $c \ne -1$. We suppose that the function f defined by (1.1) is analytic in \mathcal{U} . If

$$\left| c|z|^{2(\sum_{i=1}^{n} \alpha_i - n + 1)} + \left(1 - |z|^{2(\sum_{i=1}^{n} \alpha_i - n + 1)} \right) \frac{zf''(z)}{(\sum_{i=1}^{n} \alpha_i - n + 1)f'(z)} \right| \le 1$$
 (2.1)

for all $z \in \mathcal{U}$, then the function $G_{\alpha_1,\alpha_2,\dots,\alpha_n,n}(z)$ defined by (1.2) is analytic and univalent in \mathcal{U} .

Proof. For $z \in \mathcal{U}$ from (2.1) we have that $f'(z) \neq 0$ and from here the function

$$w(z,t) = c \cdot e^{-2t(\sum_{i=1}^{n} \alpha_i - n + 1)} + (1 - e^{-2t(\sum_{i=1}^{n} \alpha_i - n + 1)}) \frac{e^{-t}zf''(e^{-t}z)}{\sum_{i=1}^{n} \alpha_i - n + 1)f'(e^{-t}z)}$$
(2.2)

is analytic in $\overline{\mathcal{U}} = \{z : |z| \le 1\}$, for t > 0. To the function w(z, t) we apply the maximum modulus principle and we have that

$$|w(z,t)| < \max_{|z|=1} |w(z,t)| = |w(e^{i\theta},t)|$$

$$= \left| ce^{-2t(\sum_{i=1}^{n} \alpha_{i}-n+1)} + (1-e^{-2t(\sum_{i=1}^{n} \alpha_{i}-n+1)}) \frac{e^{-t+i\theta}f''(e^{-t+i\theta})}{(\sum_{i=1}^{n} \alpha_{i}-n+1)f'(e^{-t+i\theta})} \right|$$
(2.3)

where $\theta = \theta(t) \in \mathbb{R}$.

We note $\phi = e^{-t+i\theta}$. From here we have that $|\phi| = e^{-t}$.

If in relation (2.3) we replace $e^{-t+i\theta}$ with ϕ we obtain:

$$\left| w(e^{i\theta}, t) \right| = \left| c \cdot |\phi|^{2(\sum_{i=1}^{n} \alpha_i - n + 1)} + (1 - |\phi|^{2(\sum_{i=1}^{n} \alpha_i - n + 1)}) \frac{\phi f''(\phi)}{(\sum_{i=1}^{n} \alpha_i - n + 1) f'(\phi)} \right|$$
(2.4)

Because $|\phi| = e^{-t}$, for all t > 0 it results that $\phi \in \mathcal{U}$.

For $z = \phi$ using the relations (2.1) and (2.4) we obtain that

$$\left| w(e^{i\theta}, t) \right| \le 1 \tag{2.5}$$

From (2.3) and (2.5) we have |w(z,t)| < 1, for $z \in \mathcal{U}, t > 0$.

For t=0 we have that w(z,0)=c. Using the hypothesis we obtain $|w(z,0)|<1,z\in\mathcal{U}$. So, $|w(z,t)|<1,z\in\mathcal{U}$. So, $|w(z,t)|<1,z\in\mathcal{U}$, $t\geq 0$ and from here and using Theorem 1.5 for $\beta=\sum\limits_{i=1}^{n}\alpha_i-n+1$ results that $G_{\alpha_1,\alpha_2,\dots,\alpha_n,n}(z)$ is a analytic and univalent function in \mathcal{U} .

Corollary 2.2. Let $\alpha \in \mathbb{C}$, $n \in \mathbb{N}$, $n \ge 1$, $\text{Re}[\alpha - n + 1] > 0$ and $c \in \mathbb{C}$, |c| < 1, $c \ne -1$. We suppose that the function f given by (1.1) is analytic in \mathcal{U} . If

$$\left| c|z|^{2(\alpha - n + 1)} + (1 - |z|^{2(\alpha - n + 1)} \frac{zf''(z)}{(\alpha - n + 1)f'(z)} \right| \le 1$$

for all $z \in \mathcal{U}$, then the function

$$G_{n,\alpha}(z) = \left((\alpha - n + 1) \int_{0}^{z} (g_1(t))^{\alpha - 1} \dots (g_n(t))^{\alpha - 1} dt \right)^{\frac{1}{\alpha - n + 1}}$$

is analytic and univalent in *U*.

Proof. Similar with the proof of previous theorem for $\alpha_1 = \alpha_2 = \cdots = \alpha_n = \alpha$

Remark. For n = 1 in Theorem 2.1 we obtain the Pescar's criterion of univalence.

Remark. For n = 1 and $\alpha = 1$ in Theorem 2.1 we obtain Ahlfor's and Becker's univalence criterion.

Theorem 2.3. Let $\gamma_j \in \mathbb{C}$, $j = \overline{1, n}$, $\operatorname{Re}\left(\sum_{j=1}^n \frac{1}{\gamma_i}\right) > 0$ and $c \in \mathbb{C}$, $|c| \le 1$, $c \ne -1$. We suppose that the function f defined by (1.1) is analytic in \mathcal{U} . If

$$\left| c|z|^{2\sum_{j=1}^{n} \frac{1}{\gamma_{j}}} + (1-|z|^{2\sum_{j=1}^{n} \frac{1}{\gamma_{j}}}) \frac{zf''(z)}{\sum_{j=1}^{n} \frac{1}{\gamma_{j}}f'(z)} \right| \le 1$$
 (2.6)

for all $z \in \mathcal{U}$, then the function $J_{\gamma_1,\gamma_2,...,\gamma_n}(z)$ defined by (1.3) is analytic and univalent in \mathcal{U} .

Proof. From (2.6) we have that $f'(z) \neq 0$, for $z \in \mathcal{U}$. We have that the function

$$v(z,t) = c \cdot e^{-2t \sum_{j=1}^{n} \frac{1}{\gamma_j}} + \left(1 - e^{-2t \sum_{j=1}^{n} \frac{1}{\gamma_j}}\right) \frac{e^{-t} z f''(e^{-t} z)}{\sum_{j=1}^{n} \frac{1}{\gamma_j} f'(e^{-t} z)}$$
(2.7)

is analytic in $\overline{\mathcal{U}}$, for t > 0.

For the function v(z, t) we apply the maximum modulus principle and we obtain

$$|v(z,t)| < \max_{|z|=1} |v(z,t)| = |v(e^{j\theta},t)|$$

$$= \left| ce^{-2t\sum_{j=1}^{n} \frac{1}{\gamma_{j}}} + \left(1 - e^{-2t\sum_{j=1}^{n} \frac{1}{\gamma_{j}}} \right) \frac{e^{-t+j\theta}f''(e^{-t+j\theta})}{\sum_{j=1}^{n} \frac{1}{\gamma_{j}}f'(e^{-t+j\theta})} \right|$$
(2.8)

where $\theta = \theta(t) \in \mathbb{R}$.

We note with $\psi = e^{-t+j\theta}$ and we have that $|\psi| = e^{-t}$, $\forall t > 0$.

If in (2.8)we replace $e^{-t}e^{j\theta}$ with ψ we obtain

$$\left| v(e^{j\theta}, t) \right| = \left| c|\psi|^{2\sum_{j=1}^{n} \frac{1}{\gamma_{j}}} + \left(1 - |\psi|^{2\sum_{j=1}^{n} \frac{1}{\gamma_{j}}} \right) \frac{\psi \cdot f''(\psi)}{\sum_{j=1}^{n} \frac{1}{\gamma_{j}} f'(\psi)} \right|$$
(2.9)

But $|\psi| = e^{-t} < 1$ for t > 0 implies that $\psi \in \mathcal{U}$.

Using (2.6) and (2.9) for $z = \psi$ we obtain:

$$\left| v(e^{j\theta}, t) \right| \le 1 \tag{2.10}$$

From (2.8) and (2.10) we have that |v(z,t)| < 1, for all $z \in \mathcal{U}$, t > 0. For t = 0 we obtain v(z,0) = c. Using the hypothesis we obtain that |v(z,0)| < 1 for all $z \in \mathcal{U}$. So, |v(z,t)| < 1 for all $z \in \mathcal{U}$ and $t \ge 0$. Hence and from Theorem 1.5 for $\beta = \sum_{i=1}^{n} \frac{1}{\gamma_i}$ we obtain that $J_{\gamma_1,\gamma_2,...,\gamma_n}(z)$ is univalent and analytic in \mathcal{U} .

Corollary 2.4. Let $\gamma \in \mathbb{C}$, $\operatorname{Re}\left(\frac{1}{\gamma}\right) > 0$ and $c \in \mathbb{C}$, $|c| \leq 1$, $c \neq -1$. We suppose that the function f defined by (1.1) is analytic in \mathcal{U} . If

$$\left| c|z|^{\frac{2}{\gamma}} + (1 - |z|^{\frac{2}{\gamma}}) \frac{zf''(z)}{\frac{1}{\gamma}f'(z)} \right| \le 1$$

for all $z \in \mathcal{U}$, then the function

$$J_{\gamma}(z) = \left(\frac{1}{\gamma} \int_{0}^{z} t^{-1} (f(t))^{\frac{1}{\gamma}} dt\right)^{\frac{1}{\gamma}}$$

is analytic and univalent in *U*.

Remark. For $\gamma_1 = \gamma_2 = \cdots = \gamma_n = \gamma = 1$ in Theorem 2.3 we obtain Ahlfor's and Becker's criterion of univalence.

Acknowledge: This work was partially supported by the strategic project POSDRU 107/1.5/S/77265, inside POSDRU Romania 2007-2013 co-financed by the European Social Fund-Investing in People.

References

Ahlfors, L.V. (1973). Sufficient conditions for quasiconformal extension. In: *Proc. Conf., Univ. Maryland, College Park, Md.,* 1973. Ann. of Math. Studies, No. 79, Princeton Univ. Press, Princeton, N.J., 1974. pp. 23–29.

- Becker, J. (1972). Löwnersche differentialgleichung und quasikonform fortsetzbare schlichte funktionen. *J. Reine Angew. Math.* **255**, 23–43.
- Becker, J. (1973). Löwnersche differentialgleichung und schlichtheits-kriterion. Math. Ann. 202(4), 321–335.
- Breaz, D., N. Breaz and H.M. Srivastava (2009). An extension of the univalent condition for a family of integral operators. *Applied Mathematics Letters* **22**(1), 41–44.
- Mocanu, P.T., D. Breaz, G.I. Oros and Gh. Oros (2009). Analiză complexă. Editura Aeternitas, Alba Iulia.
- Pascu, N.N. and I. Radomir (1989). A new generalization of ahlfor's and becker's criterion of univalence. *Seminar on Geometric function theory, Cluj-Napoca, Preprint Nr.5*.
- Pescar, V. (1996). A new generalization of ahlfor's and becker's criterion of univalence. *Bull. Malaysian Math. Soc.* **19**(Second Series), 53–54.