

Theory and Applications of Mathematics & Computer Science

(ISSN 2067-2764) http://www.uav.ro/applications/se/journal/index.php/tamcs

Theory and Applications of Mathematics & Computer Science 2 (2) (2012) 48–54

Refined Estimates for the Equivalence Between Ditzian-Totik Moduli of Smoothness and *K*-Functionals

Gancho T. Tacheva,*

^aUniversity of Architecture, Civil Engineering and Geodesy, Department of Mathematics, BG-1046 Sofia, Bulgaria

Abstract

The aim of this note is to study the magnitude of the constants in the equivalence between the first and second order Ditzian-Totik moduli of smoothness and related *K*-functionals. Applications to some classic approximation operators are given.

Keywords: Ditzian-Totik moduli of smoothness, *K*-functional, smooth functions, constants in the equivalence. 2010 MSC: 41A15, 41A25, 41A28, 41A10.

1. Introduction and main results

Ditizian-Totik moduli of smoothness have become a standard tool in approximation theory. This is true in particular for second order moduli which play a crucial role in approximation by positive linear operators. For their properties and many applications see (Z. Ditzian, 1987). For $f \in C[0, 1]$ the second order Ditzian-Totik modulus is defined by

$$\omega_2^{\varphi}(f, h) = \sup\{|\Delta_{\rho\varphi(x)}^2 f(x)|, \ x \pm \rho\varphi(x) \in [0, 1], \ 0 < \rho \le h.\}$$
 (1.1)

Here $\varphi(x) = \sqrt{x(1-x)}$, and $\Delta_{\eta}^2 f(y) = f(y-\eta) - 2f(y) + f(y+\eta)$ if $\eta > 0$ and $y \pm \eta \in [0,1]$ and as 0 otherwise. In the sequel we will use the following notation:

 $AC_{loc}[0, 1] := \{h : h \text{ is absolutely continuous in } [a, b] \text{ for every } 0 < a < b < 1\};$

$$W_{2,\infty}^{\varphi}[0,1] := \{g : g' \in AC_{loc}[0,1] \text{ and } \|\varphi^2 g''\|_{\infty} < \infty\}.$$

The related *K*-functional $K_2^{\varphi}(f, h^2)$ is given by

$$K_2^{\varphi}(f, h^2) := \inf_{g} \{ \|f - g\|_{\infty} + h^2 \|\varphi^2 g''\|_{\infty} \}. \tag{1.2}$$

Email address: gtt_fte@uacg.acad.bg (Gancho T. Tachev)

^{*}Corresponding author

Here the infimum is taken over all $f \in W_{2,\infty}^{\varphi}[0,1]$. The definitions of the second order Ditzian-Totik modulus of smoothness and related K-functional can be generalized in a natural way for all $r \ge 1$. The equivalence between these two constructive characteristics is well-known (see Theorem 6.2 in (DeVore & Lorentz, 1993)). We cite it here as

Theorem A There are constants $c_1, c_2 > 0$, which depend only on r, such that for all $f \in C[0, 1]$

$$c_1 \omega_r^{\varphi}(f, h) \le K_r^{\varphi}(f, h^r) \le c_2 \omega_r^{\varphi}(f, h), \ 0 < h \le (2r)^{-1}.$$
 (1.3)

In many problems in approximation theory it is a difficult task to prove direct or inverse estimates directly in terms of the Ditzian-Totik moduli of smoothness. Instead of this, the K-functionals have become a powerful tool to establish such statements. However, the main disadvantage of the latter, is the fact, that practically it is impossible to calculate the value of the K-functional for a given function f. Therefore, the usual way is first to prove direct or inverse estimates in terms of the K-functional, and after this using Theorem A to reformulate the results in terms of the moduli of smoothness. This explains how important is to have a good information about the magnitude of the constants c_1, c_2 . To the best of our knowledge the problem to find the best possible values of c_2 and c_1 (in the sense c_2 -minimal and c_1 -maximal in (1.3)) is still not solved. Hardly anything appears to be known about the explicit description of the size of c_1 and c_2 for r = 1, 2 and about their asymptotic dependence on r for r > 2. The first attempt in this direction is Theorem 3.5 in (Gonska & Tachev, 2003) which we cite here as

Theorem B For $m \ge 2$, $h \in \left[\frac{\sqrt{2}}{md(m)}, \frac{\sqrt{2}}{(m-1)d(m-1)}\right]$ the following inequalities hold for any $f \in C[0, 1]$:

$$\frac{1}{16}\omega_2^{\varphi}(f,h) \le K_2^{\varphi}(f,h^2) \le c_2(m)\omega_2^{\varphi}(f,h),$$

where

$$c_2(m) := 1 + \left(\frac{m}{m-1}\right)^2 \frac{48}{d^2(m-1)},$$

and the sequence d(m) is defined as

$$d(m) = \frac{\sqrt{m^4 + m^2 + 1} - 1}{\sqrt{m^4 + m^2 + 1} + m^2}, d(m) \to \frac{1}{2}, m \to \infty.$$

It is clear that $\lim_{m\to\infty} c_2(m) = 193$. If we restrict our attention to values $h \le 1$, as a corollary from Theorem B we get

$$\frac{1}{16}\omega_2^{\varphi}(f,h) \le K_2^{\varphi}(f,h^2) \le 404 \cdot \omega_2^{\varphi}(f,h). \tag{1.4}$$

The difficulties in the proof of Theorem B are connected with the construction of an appropriate auxiliary function g in the definition of K_2^{φ} . Actually we apply a "smoothing" technique to the linear interpolant on certain places near the points of interpolation to obtain an appropriate quadratic C^1 -spline based upon the knot sequence. This method was developed in (Gonska & Kovacheva, 1994; Gonska & Tachev, 2003; H. Gonska, 2002) and further refined in (Gavrea, 2002). In this

note we essentially improve the value of the constant 404 in (1.4). Our main result states the following:

Theorem 1 *The following inequalities hold for any* $f \in C[0, 1]$, $h \in (0, 1]$:

$$\frac{1}{16}\omega_2^{\varphi}(f,h) \le K_2^{\varphi}(f,h^2) \le (5+2\sqrt{2}) \cdot \omega_2^{\varphi}(f,h). \tag{1.5}$$

In Section 2 we give the proof of Theorem 1. In Section 3 we apply Theorem 1 to obtain quantitative estimates in terms of second order Ditzian-Totik modulus of smoothness for approximation by genuine Bernstein-Durrmeyer operator, considered in (P. E. Parvanov, 1994) and also for pointwise estimates, established in (Felten, 1998). In the last section we consider the case r = 1, which is closely related to piecewise linear interpolation at specific knot sequence.

2. Proof of Theorem 1

To obtain as small as possible value of the constant c_2 in (1.3) we need an appropriate auxiliary function g in the definition of the K-functional. We use the construction, developed by Gavrea in (Gavrea, 2002) and based on the ideas from (Gonska & Kovacheva, 1994; Gonska & Tachev, 2003). Let m be fixed natural number, $m \ge 1$. The patition Δ_m of the interval [0, 1] is given by

$$\Delta_m$$
: $0 = x_0 < x_1 < \cdots < x_{2m+2} = 1$,

where

$$x_k = \sin^2 \frac{k\pi}{4(m+1)}, \ k = 0, 1, \dots, 2m+2.$$
 (2.1)

We denote by $S_m(f)$ a piecewise linear interpolant with interpolation knots-the points x_k , k = 0, 1, ..., 2m + 2. Each point $(x_k, S_m(f, x_k))$, k = 1, 2, ..., 2m + 1 we associate with two other points $(a_k, S_m(f, a_k))$, $(b_k, S_m(f, b_k))$ such that

$$a_1 = \frac{x_1}{2}, b_1 - x_1 = x_1 - a_1,$$

and

$$a_k = \frac{x_k + x_{k-1}}{2}, b_k - x_k = x_k - a_k, k = 1, 2, \dots, 2m + 1.$$

The function g is defined as follows:

For $x \in [0, a_1] \cup [b_{2m+1}, 1]$ we set $g(x) = S_m(f, x)$.

For $x \in [a_k, b_k]$, k = 1, ..., 2m + 1, g(x) is the 2nd degree Bernstein polynomial over the interval $[a_k, b_k]$, determined by the ordinates $S_m(f, a_k)$, $f(x_k)$, $S_m(f, b_k)$.

For $x \in [b_k, a_{k+1}]$, k = 1, 2, ..., 2m we set $g(x) = S_m(f, x)$. Thus g(x) is uniquely determined by the interpolation conditions and is C^1 -continuous. For this function the following two crucial estimates are proved in Theorem 6 in (Gavrea, 2002):

$$||f - g||_{\infty} \le \omega_2^{\varphi} \left(f, \sin \frac{\pi}{2(m+1)} \right), \tag{2.2}$$

$$\|\varphi^2 g''\|_{\infty} \le \frac{1}{\sin^2 \frac{\pi}{4(m+1)}} \cdot \omega_2^{\varphi} \left(f, \sin \frac{\pi}{2(m+1)} \right).$$
 (2.3)

For any positive number $h \in (0, 1]$ there exists a natural number $m \ge 1$, such that

$$h \in \left[\sin\frac{\pi}{2(m+1)}, \sin\frac{\pi}{2m}\right].$$

Hence (2.2) and (2.3) imply

$$||f - g||_{\infty} \le \omega_2^{\varphi}(f, h), \tag{2.4}$$

$$h^2 \|\varphi^2 g''\|_{\infty} \le \frac{\sin^2 \frac{\pi}{2m}}{\sin^2 \frac{\pi}{4(m+1)}} \cdot \omega_2^{\varphi}(f, h).$$
 (2.5)

It is easy to verify that the sequence

$$c(m) := \frac{\sin^2 \frac{\pi}{2m}}{\sin^2 \frac{\pi}{4(m+1)}}$$

is monotone decreasing, i.e. $c(m) \le c(1) = 4 + 2\sqrt{2}$. Consequently the right-hand side of (1.5) is proved. Lastly we point out that the constant $\frac{1}{16}$ in (1.5) could be derived from Theorem 6.1 in (DeVore & Lorentz, 1993). Thus the proof of Theorem 1 is completed.

3. Applications

1. The genuine Bernstein-Durrmeyer operator. As first application of Theorem 1 let us consider the so-called genuine Bernstein-Durrmeyer operator, introduced by Goodman and Sharma in (Goodman & Sharma, 1991) and given by

$$U_n(f,x) = f(0)p_{n,0}(x) + f(1)p_{n,n}(x) + (n-1)\sum_{k=1}^{n-1} p_{n,k}(x) \int_0^1 p_{n-2,k-1}(t)f(t)dt,$$

where $p_{n,k}(x) = \binom{n}{k} x^k (1-x)^{n-k}$, $k = 0, \dots, n$, are the fundamental Bernstein polynomials. Parvanov and Popov proved in (P. E. Parvanov, 1994) in an elementary and very elegant manner a direct and a strong converse inequality of type A, thus completely characterizing the approximation speed of the operators. The main result in (P. E. Parvanov, 1994) states the following:

For any $f \in C[0, 1]$ we have

$$\frac{1}{2}||U_nf - f||_{\infty} \le K_2^{\varphi}(f, \frac{1}{2n}) \le (4 + \sqrt{2})||U_nf - f||_{\infty}. \tag{3.1}$$

As a corollary from Theorem 1 and (3.1) we obtain

$$\frac{1}{2(5+2\sqrt{2})} \|U_n f - f\|_{\infty} \le \omega_2^{\varphi}(f, \frac{1}{\sqrt{2n}}) \le 16(4+\sqrt{2}) \|U_n f - f\|_{\infty}. \tag{3.2}$$

2. The Bernstein operator The classical Bernstein operator $B_n(f, x)$ for a given function $f \in C[0, 1]$ is defined by

$$B_n(f, x) = \sum_{k=0}^{n} f(\frac{k}{n}) p_{n,k}(x).$$

Let $\Phi: [0,1] \to R$, $\Phi \neq 0$ be a function such that Φ^2 is concave. Then the pointwise approximation

$$|B_n(f,x) - f(x)| \le 2K_2^{\varphi} \left(f, n^{-1} \frac{\varphi^2(x)}{\Phi^2(x)} \right), \ x \in [0,1], \tag{3.3}$$

holds true for all $f \in C[0, 1], n \in N$. This result was proved by Felten in (Felten, 1998). As a straightforward corollary from Theorem 1 we get

$$|B_n(f,x) - f(x)| \le 2(5 + 2\sqrt{2})\omega_2^{\varphi}\left(f, n^{-\frac{1}{2}}\frac{\varphi(x)}{\Phi(x)}\right), \ x \in [0,1].$$
(3.4)

4. The case r = 1

In this section we consider the interval [-1, 1] instead of [0, 1]. After a linear transformation it is clear that each estimate in one of these two cases can be obtained from the other. The weight function over [-1, 1] is now $\varphi(x) = \sqrt{1 - x^2}$. Let $\Delta_n : -1 = x_0 < x_1 < \cdots < x_n = 1$ be a partition of the interval [-1, 1] such that the inequalities

$$c_3(x_{k+1} - x_k) \le \frac{\varphi(x)}{n} \le c_4(x_{k+1} - x_k) \tag{4.1}$$

are satisfied for $k = 1, 2, ..., n - 2, x \in [x_k, x_{k+1}]$, and also

$$c_3(x+1) \le \frac{\varphi(x)}{n} \le c_4(x+1), \ x \in [x_0, x_1],$$

$$c_3(1-x) \le \frac{\varphi(x)}{n} \le c_4(1-x), \ x \in [x_{n-1}, x_n],$$

where c_i , i = 3, 4 are absolute positive constants independent of n. The function g in the definition of K_1^{φ} we define as the linear interpolant of $f \in C[-1, 1]$ with knots $\{x_k\}$. For $x \in [x_k, x_{k+1}], k = 1, \ldots, n-2$, from the properties of linear interpolation it follows that

$$|g(x) - f(x)| \le \omega_1(f, x_{k+1} - x_k) = \sup\{|f(x + \frac{h}{2}) - f(x - \frac{h}{2})|, x, x \pm \frac{h}{2} \in [x_k, x_{k+1}]\} \le \omega_1^{\varphi}(f, \frac{1}{c_3 n}).$$
 (4.2)

Let $x \in [-1, x_1]$. The case $x \in [x_{n-1}, 1]$ is analogous. Obviously

$$|g(x) - f(x)| \le \sup \left\{ |f(x + \frac{h}{2}) - f(x - \frac{h}{2})|, \ x, x \pm \frac{h}{2} \in [-1, x_1] \right\}.$$

The inequality $x - \frac{h}{2} \ge -1$ yields $h \le 2(x+1) \le \frac{2}{c_3} \frac{\varphi(x)}{n}$, which follows from (4.1). To summarize we proved

$$||f - g||_{\infty} \le \omega_1^{\varphi}(f, \frac{2}{c_3 n}).$$
 (4.3)

Next we evaluate the second term in the definition of the *K*-functional.

For $x \in [x_k, x_{k+1}]$, k = 1, 2, ..., n - 2, it is easy to verify that

$$\frac{1}{n}|\varphi(x)g'(x)| = \frac{\varphi(x)}{n(x_{k+1} - x_k)}|f(x_k) - f(x_{k+1})|.$$

Using (4.1) and (4.2) we get

$$\frac{1}{n} \|\varphi g'\|_{L_{\infty}[x_1, x_{n-1}]} \le c_4 \omega_1^{\varphi}(f, \frac{1}{c_3 n}).$$

It remains to consider $x \in [-1, x_1]$. In this case we observe that

$$\frac{\varphi(x)}{n} \le c_4(x+1).$$

Therefore for $x \in [-1, x_1]$ we have

$$\frac{1}{n}|\varphi(x)g'(x)| \le c_4\omega_1^{\varphi}(f, \frac{2}{c_3n}).$$

Finally we arrive at

$$\frac{1}{n} \|\varphi g'\| \le c_4 \omega_1^{\varphi}(f, \frac{2}{c_3 n}). \tag{4.4}$$

For every 0 < t < 1 there exists $n \ge 2$ such that

$$\frac{2}{c_3 n} < t < \frac{2}{c_3 (n-1)}.$$

Combining (4.3) and (4.4) we get

$$K_1^{\varphi}(f,t) \le \left[1 + \frac{2c_4}{c_3} \left(\frac{n}{n-1}\right)\right] \omega_1^{\varphi}(f,t). \tag{4.5}$$

It is clear that the condition number $\frac{c_4}{c_3}$ of our system of knots determines the value of the constant in front of the modulus. By the previous considerations we have shown the validity of

Theorem 2. For $f \in C[-1, 1]$, $n \ge 2$, $t \le \frac{1}{2}$ we have

$$\frac{1}{8}\omega_1^{\varphi}(f,t) \le K_1^{\varphi}(f,t) \le c_2(n)\omega_1^{\varphi}(f,t),\tag{4.6}$$

where

$$c_2(n) = \left[1 + \frac{2c_4}{c_3} \left(\frac{n}{n-1}\right)\right].$$

Remark 1. The constant $\frac{1}{8}$ in the left side of (4.6) follows easily if we verify the computations made in Theorem 6.1 in Chapter 6 in (DeVore & Lorentz, 1993).

Remark 2. If we strictly follow the construction in the proof of Theorem 2, it is possible to improve the value of $c_2(n)$, i.e. to obtain the value of the latter as small as possible. In order to do this, we would find an optimal set of knots, satisfying (4.1) with a condition number as small as possible. In this case we formulate the following

Open problem. Find the optimal set $\{x_k\}$ satisfying (4.1) in the sense that the condition number $\frac{c_4}{c_3}$ is minimal.

Here we give two examples of knots.

Example A. In this example we choose $\{x_k\}$ to be the well-known zeros of the Chebyshev polynomial of the first kind

$$x_k = \cos \theta_k, \ \theta_k := \frac{(2k-1)\pi}{2n}, \ k = 1, \dots, n, \ x_{n+1} := -1, x_0 := 1.$$

Following (7.7-7.8) in Chapter 8 in [1] we get $c_3 = \frac{1}{3\pi}$, $c_4 = 3\pi$. The condition number is $9\pi^2$.

Example B. Here we choose the extremal points of the Chebyshev polynomial of the first kind

$$x_k = \cos(\frac{k\pi}{n}), \ k = 0, \dots, n.$$

This is the same set of interpolation knots, considered in Section 2 for the interval [0, 1]. In this case we compute $c_3 = \frac{1}{2\pi}$, $c_4 = 2\pi$. The condition number is $4\pi^2$ -better as in Example A.

References

DeVore, R. A. and G. G. Lorentz (1993). Constructive Approximation. Springer, Berlin.

Felten, M. (1998). Direct and inverse estimates for Bernstein polynomials. Constructive Approximation 14, 459-468.

Gavrea, I. (2002). Estimates for positive linear operators in trems of the second order Ditzian-Totik modulus of smoothness. *Rend. Circ. Mat. Palermo* (2) *Suppl.* (68), 439–454.

Gonska, H. and R. Kovacheva (1994). The second order modulus revisited: remarks, applications, problems. In: *Proceedings of the Confer. Sem. Mat. Univ. Bari.* pp. 1–32.

Gonska, Heinz H. and Gancho T. Tachev (2003). The second Ditzian-Totik modulus revisited: refined estimates for positive linear operators.. *Rev. Anal. Numér. Théor. Approx.* **32**(1), 39–61.

Goodman, T. N. T. and A. Sharma (1991). A Bernstein-type operator on the Simplex. Math. Balkanica 5(2), 129-145.

H. Gonska, G. Tachev (2002). On the constants in ω_2^{φ} - inequalities. Rend. Circ. Mat. Palermo (2) Suppl. (68), 467–477.

P. E. Parvanov, B. D. Popov (1994). The limit case of Bernstein's operators with Jacobi-weights. *Math. Balkanica* **8**(2-3), 165–177.

Z. Ditzian, V. Totik (1987). Moduli of Smoothness. Springer, New York.