

Theory and Applications of Mathematics & Computer Science

(ISSN 2067-2764, EISSN 2247-6202) http://www.uav.ro/applications/se/journal/index.php/tamcs

Theory and Applications of Mathematics & Computer Science 6 (2) (2016) 187 – 197

On a New BV_{σ} I-Convergent Double Sequence Spaces

Vakeel A. Khan^{a,*}, Hira Fatima^a, Sameera A.A. Abdullah^a, M. Daud Khan^a

^aDepartment of Mathematics, Aligarh Muslim University, Aligarh-202002, India

Abstract

In this article we study $_2(_0BV^I_{\sigma}(M))$, $_2BV^I_{\sigma}(M)$, $_2(_{\infty}BV^I_{\sigma}(M))$ double sequence spaces with the help of BV_{σ} space and an Orlicz function M. The BV_{σ} space was introduced and studied by (Mursaleen, 1983). We study some of its properties and prove some inclusion relations.

Keywords: Bounded variation, invariant mean, σ -Bounded variation, ideal, filter, Orlicz function, I-Convergence, I-null, solid space, sequence algebra, convergence free space. 2010 MSC: 40C05, 46A45, 46E30, 46E40, 46B20.

1. Introduction

Let $\mathbb{N}, \mathbb{R}, \mathbb{C}$ be the sets of all natural, real, and complex numbers respectively. We denote

$$_2\omega = \{x = (x_{ij}) : x_{ij} \in \mathbb{R} \ or \mathbb{C}\},$$

showing the space of all real or complex sequences.

Definition 1.1. A double sequence of complex numbers is defined as a function $X : \mathbb{N} \times \mathbb{N} \to \mathbb{C}$. We denote a double sequence as (x_{ij}) where the two subscripts run through the sequence of natural numbers independent of each other. A number $a \in \mathbb{C}$ is called double limit of a double sequence (x_{ij}) if for every $\epsilon > 0$ there exists some $N = N(\epsilon) \in \mathbb{N}$ such that,

$$|(x_{ij}) - a| < \epsilon, \text{ for all } i, j \geqslant N, \tag{1.1}$$

(see (Habil, 2006)). Let l_{∞} and c denote the Banach space bounded and convergent sequences, respectively, with norm $||x||_{\infty} = \sup_{k} |x_k|$. Let v be denote the space of sequences of bounded variation. That is,

$$v = \{x = (x_k) : \sum_{k=0}^{\infty} |x_k - x_{k-1}| < \infty, x_{-1} = 0\}$$
 (1.2)

Email addresses: vakhanmaths@gmail.com (Vakeel A. Khan), hirafatima2014@gmail.com (Hira Fatima), ameera173a@gmail.com (Sameera A.A. Abdullah), mhddaudkhan2@gmail.com (M. Daud Khan)

^{*}Corresponding author

where v is a Banach space normed by $||x|| = \sum_{k=0}^{\infty} |x_k - x_{k-1}|$ (see (Mursaleen, 1983)). Let σ be an injective mapping of the set of the positive integers into itself having no finite orbits. A continuous linear functional ϕ on l_{∞} is said to be an invariant mean or σ -mean if and only if:

- 1. $\phi(x) \ge 0$ where the sequence $x = (x_k)$ has $x_k \ge 0$ for all k,
- 2. $\phi(e) = 1$ where $e = \{1, 1, 1, 1, \dots\}$,
- 3. $\phi(x_{\sigma(n)}) = \phi(x)$ for all $x \in l_{\infty}$.

If $x = (x_k)$, write $Tx = (Tx_k) = (x_{\sigma(k)})$. It can be shown that

$$V_{\sigma} = \{x = (x_k) : \lim_{m \to \infty} t_{m,k}(x) = L \text{ uniformly in } k, L = \sigma - \lim x\}$$
(1.3)

where $m \ge 0, k > 0$.

$$t_{m,k}(x) = \frac{x_k + x_{\sigma(k)} + \dots + x_{\sigma}^m(k)}{m+1} \text{ and } t_{-1,k} = 0,$$
(1.4)

where $\sigma^m(k)$ denote the m^{th} -iterate of $\sigma(k)$ at k . In this case σ is the translation mapping, that is, $\sigma(k) = k+1$, σ -mean is called a Banach limit and V_{σ} , the set of bounded sequences of all whose invariant means are equal, is the set of almost convergent sequences. The special case of (1.4) in which $\sigma(k) = k+1$ was given by (Lorentz, 1948), and that the general result can be proved in a similar way. It is familiar that a Banach limit extends the limit functional on c in the sense that

$$\phi(x) = \lim x$$
, for all $x \in c$. (1.5)

Theorem 1.1. A σ -mean extends the limit functional on c in the sense that $\phi(x) = \lim x$ for all $x \in c$ if and only if σ has no finite orbits. That is, if and only if for all $k \ge 0$, $j \ge 1$, $\sigma^j(k) \ne k$, (see (Khan, 2008))

Put

$$\phi_{m,k}(x) = t_{m,k}(x) - t_{m-1,k}(x), \tag{1.6}$$

assuming that $t_{-1,k}(x) = 0$. A straight forward calculation shows that (Mursaleen, 1983),

$$\phi_{m,k}(x) = \begin{cases} \frac{1}{m(m+1)} \sum_{j=1}^{m} J(x_{\sigma}^{j}(k) - x_{\sigma}^{j-1}(k)), & \text{if } m \geqslant 1\\ x_{k}, & \text{if } m = 0. \end{cases}$$

For any sequence x,y and scalar λ , we have $\phi_{m,k}(x+y) = \phi_{m,k}(x) + \phi_{m,k}(y)$ and $\phi_{m,k}(\lambda x) = \lambda \phi_{m,k}(x)$.

Definition 1.2. A sequence $x \in l_{\infty}$ is of σ -bounded variation if and only if:

- (i) $\sum |\phi_{m,k}(x)|$ converges uniformly in k,
- (ii) $\lim_{m\to\infty} t_{m,k}(x)$, which must exist, should take the same value for all k.

We denote by BV_{σ} , the space of all sequences of σ -bounded variation (see (Khan, 2008)):

$$BV_{\sigma} = \{x \in l_{\infty} : \sum_{m} |\phi_{m,k}(x)| < \infty, \text{ uniformly in } k\}.$$

Theorem 1.2. BV_{σ} is a Banach space normed by

$$||x|| = \sup_{k} \sum_{m=0}^{\infty} |\phi_{m,k}(x)|,$$
 (1.7)

(see (Khan & Ebadullah, 2012)).

Subsequently invariant mean studied by (Mursaleen, 1983), (Ahmad & Mursaleen, 1988), (Raimi & A., 1963), (Khan & Ebadullah, 2011), (Khan & Ebadullah, 2012), (Schaefer, 1972) and many others.

Definition 1.3. A function $M:[0,\infty)\longrightarrow [0,\infty)$ is said to be an Orlicz function if it satisfies the following conditions;

- (i)M is continuous, convex and non-decreasing,
- (ii)M(0) = 0, M(x) > 0 and $M(x) \to \infty$ as $x \to \infty$.

Remark. (see (Tripathy & Hazarika, 2011)). (i) If the convexity of an Orlicz function is replaced by $M(x + y) \le M(x) + M(y)$, then this function is called Modulus function.

(ii) If M is an Orlicz function, then $M(\lambda X) \leq \lambda M(x)$ for all λ with $0 < \lambda < 1$.

An Orlicz function M is said to satisfy \triangle_2 -condition for all values of u if there exists a constant K>0 such that $M(Lu)\leqslant KLM(u)$ for all values of L> 1(see (Tripathy & Hazarika, 2011)). (Lindenstrauss & Tzafriri, 1971) used the idea of an Orlicz function to construct the sequence space $l_M=\{x\in w: \sum_{k=1}^\infty M(\frac{|x_k|}{\rho})<\infty \text{ for some }\rho>0\}$. The space l_∞ becomes a Banach space with the norm

$$||x|| = \inf\left\{\rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1\right\},\tag{1.8}$$

which is called an Orlicz sequence space. The space l_M is closely related to the space l_p which is an Orlicz sequence space with $M(t) = t^p$ for $1 \le p < \infty$. Later on, some Orlicz sequence spaces were investigated by (Hazarika & Esi, 2013), (Maddox, 1970), (Parshar & Choudhary, 1994), (Bhardwaj & Singh, 2000), (Et, 2001), (Tripathy & Hazarika, 2011) and many others. Initially, as a generalization of statistical convergence, the notation of I-convergence was introduced and studied by P. Kostyrko and Wilczynski(Kostyrko *et al.*, 2000). Later on, it was studied by Hazarika and Esi (Hazarika & Esi, 2013) and many others.

Definition 1.4. A double sequence $x = x_{ij} \in {}_{2}\omega$ is said to be I-convergent to a number L if for every $\epsilon > 0$, we have

$$\{(i,j) \in \mathbb{N} \times \mathbb{N} : |x_{ij} - L| \ge \epsilon\} \in I. \tag{1.9}$$

In this case, we write $I - \lim x_{ij} = L$.

Definition 1.5. Let X be a non empty set. Then, a family of sets $I \subseteq 2^X$ is said to be an Ideal in X if

- $(i)\phi \in I$;
- (ii) I is additive; that is, $A, B \in I \Rightarrow A \cup B \in I$;
- (iii) I is hereditary that is, $A \in I$, $B \subseteq A \Rightarrow B \in I$.

190

An Ideal $I \subseteq 2^X$ is called non trivial if $I \neq 2^X$. A non trivial ideal $I \subseteq 2^X$ is called admissible if $\{\{x\} : x \in X\} \subseteq I$.

A non trivial ideal I is maximal if there cannot exist any non trivial ideal $J \neq I$ containing I as a subset.

Definition 1.6. A non empty family of sets $\mathcal{F} \subseteq 2^X$ is said to be filter on X if and only if (i) $\emptyset \notin \mathcal{F}$;

- (ii) for, A, B $\in \mathcal{F}$ we have $A \cap B \in \mathcal{F}$;
- (iii) for each $A \in \mathcal{F}$ and $A \subseteq B$ implies $B \in \mathcal{F}$. For each ideal I, there is a filter $\mathcal{F}(I)$ corresponding to I. That is,

$$\mathcal{F}(I) = \{ K \subseteq N : K^c \in I \}, \text{ where } K^c = N - K.$$
 (1.10)

Definition 1.7. A double sequence $(x_{ij}) \in {}_2\omega$ is said to be I - null if L=0. In this case, we write

$$I - \lim x_{ij} = 0. (1.11)$$

Definition 1.8. A double sequence $(x_{ij}) \in {}_2\omega$ is said to be I-cauchy if for every $\epsilon > 0$ there exists numbers $m = m(\epsilon), n = n(\epsilon)$ such that

$$\{(i,j) \in \mathbb{N} \times \mathbb{N} : |x_{ij} - x_{mn}| \ge \epsilon\} \in I. \tag{1.12}$$

Definition 1.9. A double sequence $(x_{ij}) \in {}_2\omega$ is said to be I-bounded if there exists M > 0 such that

$$\{(i,j) \in \mathbb{N} \times \mathbb{N} : |x_{ij}| > M\}. \tag{1.13}$$

Definition 1.10. A double sequence space E is said to be solid or normal if $x_{ij} \in E$ implies that $(\alpha_{ij}x_{ij}) \in E$ for all sequence of scalars (α_{ij}) with $|\alpha_{ij}| < 1$ for all $(i, j) \in \mathbb{N} \times \mathbb{N}$.

Definition 1.11. A double sequence space E is said to be symmetric if $(x_{\pi(i)\pi(j)}) \in E$ whenever $(x_{ij}) \in E$, where $\pi(i)$ and $\pi(j)$ is a permutation on \mathbb{N} .

Definition 1.12. A double sequence space E is said to be sequence algebra if $(x_{ij}y_{ij}) \in E$ whenever $(x_{ij}), (y_{ij}) \in E$.

Definition 1.13. A double sequence space E is said to be convergence free if $(y_{ij}) \in E$ whenever $(x_{ij}) \in E$ and $x_{ij} = 0$ implies $y_{ij} = 0$, for all $(i, j) \in \mathbb{N} \times \mathbb{N}$.

Definition 1.14. Let $K = \{(n_i, k_j) : i, j \in \mathbb{N}; n_1 < n_2 < n_3 < \dots \text{ and } k_1 < k_2 < k_3 < \dots\} \subseteq \mathbb{N} \times \mathbb{N}$ and E be a double sequence space. A K-step space of E is a sequence space

$$\lambda_k^E = \{(\alpha_{ij}x_{ij}) : (x_{ij}) \in E\}.$$

Definition 1.15. A cannonical preimage of a sequence $(x_{n_ik_j}) \in E$ is a sequence $(b_{nk}) \in E$ defined as follows

$$b_{n,k} = \begin{cases} a_{n,k}, & \text{for n , k } \in K \\ 0, & \text{otherwise.} \end{cases}$$

Definition 1.16. A sequence space E is said to be monotone if it contains the cannonical preimages of all its stepspaces.

Remark. If $I = I_f$, the class of all finite subsets of \mathbb{N} . Then I is an admissible ideal in \mathbb{N} and I_f convergence coincides with the usual convergence.

Definition 1.17. If $I = I_{\delta} = \{A \subseteq \mathbb{N} : \delta(A) = 0\}$. Then I is an admissible ideal in \mathbb{N} and we call the I_{δ} -convergence as the logarithmic statistical convergence.

Definition 1.18. If $I = I_d = \{A \subseteq \mathbb{N} : d(A) = 0\}$. Then,I is an admissible ideal in \mathbb{N} and we call the I_d -convergence as asymptotic statistical covergence.

Lemma 1.1. ((*Tripathy & Hazarika*, 2011)). Every solid space is monotone.

Lemma 1.2. Let $\mathcal{F}(I)$ and $M \subseteq N$. If $M \notin I$, then $M \cap K \notin I$.

Lemma 1.3. If $I \subseteq 2^N$ and $M \subseteq N$. If $M \notin I$, then $M \cap N \notin I$.

2. Main Results

Recently (Khan & Khan, 2013) introduced and studied the following sequence space. For $m,n \ge 0$

$${}_{2}BV_{\sigma}^{I} = \{x = (x_{ij}) \in {}_{2}\omega : \{(i,j) \in \mathbb{N} \times \mathbb{N} : |\phi_{mnij}(x) - L| \geqslant \epsilon\} \in I, for some \ L \in \mathbb{C}\}. \tag{2.1}$$

In this article we introduce the following double sequence spaces. For $m,n \ge 0$

$$_{2}BV_{\sigma}^{I}(M) = \{x = (x_{ij}) \in _{2}\omega : I - \lim M(\frac{|\phi_{mnij}(x) - L|}{\rho}) = 0, \text{ for some } L \in \mathbb{C}, \rho > 0\}$$
 (2.2)

$$_{2}(_{0}BV_{\sigma}^{I}(M)) = \{x = (x_{ij}) \in _{2}\omega : I - \lim M(\frac{|\phi_{mnij}(x)|}{\rho}) = 0, \rho > 0\}, \tag{2.3}$$

$$_{2}(_{\infty}BV_{\sigma}^{I}(M)) = \{x = (x_{ij}) \in _{2}\omega : \{(i,j) \in \mathbb{N} \times \mathbb{N} \mid \exists \ k > 0 \ s.t \ M(\frac{|\phi_{mnij}(x)|}{\rho}) \geqslant k\} \in I, \rho > 0\}$$
(2.4)

$$_{2}(_{\infty}BV_{\sigma}(M)) = \{x = (x_{ij}) \in _{2}\omega : \sup M(\frac{|\phi_{mnij}(x)|}{\rho}) < \infty, \rho > 0\}.$$
 (2.5)

We also denote

$$_{2}M^{I}_{BV_{\sigma}}(M) =_{2} BV^{I}_{\sigma}(M) \cap _{2}(_{\infty}BV_{\sigma}(M))$$

and

$$_2(_0M^I_{BV_\sigma}(M)) = _2(_0BV^I_\sigma(M)) \cap _2(_\infty BV_\sigma(M)).$$

Theorem 2.1. For any Orlicz function M, the classes of double sequence $_2(_0BV_\sigma^I(M)),_2BV_\sigma^I(M),_2(_0M_{BV_\sigma}^I(M)),$ and $_2M_{BV_\sigma}^I(M)$ are linear spaces.

Proof. Let $x=(x_{ij}),(y_{ij})\in {}_{2}BV_{\sigma}^{I}(M)$ be any two arbitrary elements, and let α,β are scalars. Now, since $(x_{ij}),(y_{ij})\in {}_{2}BV_{\sigma}^{I}(M)$. Then this implies that \exists some positive numbers $L_1,L_2\in\mathbb{C}$ and $\rho_1,\rho_2>0$ such that,

$$I - \lim_{i,j} M\left(\frac{|\phi_{mnij}(x) - L_1|}{\rho_1}\right) = 0,$$
(2.6)

$$I - \lim_{i,j} M\left(\frac{|\phi_{mnij}(y) - L_2|}{\rho_2}\right) = 0.$$
 (2.7)

 \Rightarrow for any given $\epsilon > 0$, the sets

$$\Rightarrow \{(i,j) \in \mathbb{N} \times \mathbb{N} : M\left(\frac{|\phi_{mnij}(x) - L_1|}{\rho_1}\right) \geqslant \frac{\epsilon}{2}\} \in I, \tag{2.8}$$

$$\{(i,j) \in \mathbb{N} \times \mathbb{N} : M\left(\frac{|\phi_{mnij}(y) - L_2|}{\rho_2}\right) \geqslant \frac{\epsilon}{2}\} \in I.$$
 (2.9)

Now let

$$A_1 = \{(i,j) \in \mathbb{N} \times \mathbb{N} : M\left(\frac{|\phi_{ij}(x) - L_1|}{\rho_1}\right) < \frac{\epsilon}{2}\} \in I, \tag{2.10}$$

$$A_2 = \{(i,j) \in \mathbb{N} \times \mathbb{N} : M\left(\frac{|\phi_{ij}(y) - L_2|}{\rho_2}\right) < \frac{\epsilon}{2}\} \in I.$$
 (2.11)

be such that $A_1^c, A_2^c \in I$. Let $\rho_3 = max\{2|\alpha|\rho_1, 2|\beta|\rho_2\}$ Since M is non decreasing and convex function, we have

$$\begin{split} M(\frac{|\phi_{mnij}(\alpha x + \beta y) - (\alpha L_1 + \beta L_2)|}{\rho_3}) &= M(\frac{|(\alpha \phi_{mnij}(x) + \beta \phi_{mnij}(y)) - (\alpha L_1 + \beta L_2)|}{\rho_3}) \\ &= M(\frac{|\alpha(\phi_{mnij}(x) - L_1) + \beta(\phi_{mnij}(y) - L_2)|}{\rho_3}) \\ &\leqslant M(\frac{|\alpha||\phi_{mnij}(x) - L_1|}{\rho_3}) + M(\frac{|\beta||\phi_{mnij}(y) - L_2|}{\rho_3}) \\ &\leqslant M(\frac{|\alpha||\phi_{mnij}(x) - L_1|}{\rho_1}) + M(\frac{|\beta||\phi_{mnij}(y) - L_2|}{\rho_2}) \\ &\leqslant \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{split}$$

$$\Rightarrow \{(i,j) \in \mathbb{N} \times \mathbb{N} : M(\frac{|\phi_{mnij}(\alpha x + \beta y) - (\alpha L_1 + \beta L_2)|}{\rho_3}) > \epsilon\} \in I$$
 implies that $I - \lim_{i,j} M(\frac{|\phi_{mnij}(\alpha x + \beta y) - (\alpha L_1 + \beta L_2)|}{\rho_3}) = 0.$

Thus $\alpha(x_{ij}) + \beta(y_{ij}) \in {}_{2}BV_{\sigma}^{I}(M)$. As (x_{ij}) and (y_{ij}) are two arbitrary element then $\alpha x_{ij} + \beta y_{ij} \in {}_{2}BV_{\sigma}^{I}(M)$ for all x_{ij} , $y_{ij} \in {}_{2}BV_{\sigma}^{I}(M)$, for all scalars α, β . Hence ${}_{2}BV_{\sigma}^{I}(M)$ is linear space. The proof for other spaces will follow similarly.

Theorem 2.2. Let M_1 , M_2 be two Orlicz functions and statisfying \triangle_2 condition ,then $(a)X(M_2) \subseteq X(M_1M_2)$ $(b)X(M_1) \cap X(M_2) \subseteq X(M_1+M_2)$ for $X = {}_2BV_{\sigma}^I$, ${}_2({}_0BV_{\sigma}^I)$, ${}_2M_{BV_{\sigma}}^I$, ${}_2({}_0M_{BV_{\sigma}}^I)$.

Proof. (a)Let $x = (x_{ij}) \in {}_2({}_0BV^I_\sigma(M_2))$ be an arbitrary element $\Rightarrow \rho > 0$ such that

$$I - \lim M_2(\frac{|\phi_{mnij}(x)|}{\rho}) = 0. {(2.12)}$$

Let $\epsilon > 0$ and choose δ with $0 < \delta < 1$ such that $M_1(t) < \epsilon$ for $0 < t \le \delta$.

Write $y_{ij} = M_2(\frac{|\phi_{mnij}(x)|}{\rho})$ and consider,

$$\lim_{ij} M_1(y_{ij}) = \lim_{y_{ij} \le \delta, i, j \in \mathbb{N}} M_1(y_{ij}) + \lim_{y_{ij} > \delta, i, j \in \mathbb{N}} M_1(y_{ij}). \tag{2.13}$$

Now, since M_1 is an Orlicz function so we have $M_1(\lambda x) \le \lambda M_1(x)$, $0 < \lambda < 1$. Therefore we have,

$$\lim_{y_{ij} \le \delta, \ i, j \in \mathbb{N}} M_1(y_{ij}) \le M_1(2) \lim_{y_{ij} \le \delta, \ i, j \in \mathbb{N}} (y_{ij}). \tag{2.14}$$

For $y_{ij} > \delta$, we have $y_{ij} < \frac{y_{ij}}{\delta} < 1 + \frac{y_{ij}}{\delta}$. Now, since M_1 is non-decreasing and convex, it follows that,

$$M_1(y_{ij}) < M_1(1 + \frac{y_{ij}}{\delta}) < \frac{1}{2}M_1(2) + \frac{1}{2}M_1(\frac{2y_{ij}}{\delta}).$$
 (2.15)

Since M_1 satisfies the \triangle_2 - condition we have,

$$M_{1}(y_{ij}) < \frac{1}{2} K \frac{y_{ij}}{\delta} M_{1}(2) + \frac{1}{2} K M_{1}(\frac{2y_{ij}}{\delta})$$

$$< \frac{1}{2} K \frac{y_{ij}}{\delta} M_{1}(2) + \frac{1}{2} K \frac{y_{ij}}{\delta} M_{1}(2)$$

$$= K \frac{y_{ij}}{\delta} M_{1}(2). \tag{2.16}$$

This implies that,

$$M_1(y_{ij}) < K \frac{y_{ij}}{\delta} M_1(2).$$
 (2.17)

Hence, we have

$$\lim_{y_{ij} > \delta, \ i, j \in \mathbb{N}} M_1(y_{ij}) \leq \max\{1, K\delta^{-1}M_1(2) \lim_{y_{ij} > \delta, i, j \in \mathbb{N}} (y_{ij})\}. \tag{2.18}$$

Therefore from (2.12), and (2.13) we have

$$I - \lim_{i \neq j} M_1(y_{ij}) = 0.$$

$$\Rightarrow I - \lim_{ij} M_1 M_2 \left(\frac{|\phi_{mnij}(x)|}{\rho} \right) = 0.$$

This implies that $x = (x_{ij}) \in {}_2({}_0BV^I_\sigma(M_1M_2))$. Hence $X(M_2) \subseteq X(M_1M_2)$ for $X = {}_2({}_0BV^I_\sigma)$. The other cases can be proved in similar way.

(b) Let $x=(x_{ij})\in {}_2({}_0BV^I_\sigma(M_1))\cap {}_2({}_0BV^I_\sigma(M_2)).$ Let $\epsilon>0$ be given. Then $\exists \rho>0$ such that,

$$I - \lim M_1(\frac{|\phi_{mnij}(x)|}{\rho}) = 0, \tag{2.19}$$

and

$$I - \lim M_2(\frac{|\phi_{mnij}(x)|}{\rho}) = 0.$$
 (2.20)

Therefore

$$I - \lim_{ij} (M_1 + M_2)(\frac{|\phi_{mnij}(x)|}{
ho}) = I - \lim_{ij} M_1(\frac{|\phi_{mnij}(x)|}{
ho}) + I - \lim_{ij} M_2(\frac{|\phi_{mnij}(x)|}{
ho}),$$

from eqs (2.19) and (2.20)

$$\Rightarrow I - \lim_{ij} (M_1 + M_2)(rac{|\phi_{mnij}(x)|}{
ho}) = 0.$$

we get

$$x = (x_{ij}) \in {}_{2}({}_{0}BV_{\sigma}^{I}(M_{1} + M_{2})).$$

Hence we get $_2(_0BV_\sigma^I(M_1)) \cap _2(_0BV_\sigma^I(M_2)) \subseteq _2(_0BV_\sigma^I(M_1+M_2))$. For $X=_2BV_\sigma^I, _2(_0M_{BV_\sigma}^I), _2(M_{BV_\sigma}^I)$ the inclusion are similar.

Corollary 2.1. $X \subseteq X(M)$ for $X = {}_2(BV^I_{\sigma}), {}_2BV^I_{\sigma}, {}_2({}_0M^I_{BV_{\sigma}})$ and ${}_2M^I_{BV_{\sigma}}$.

Proof. For this let M(x) = x, for all $x = (x_{ij}) \in X$. Let us suppose that $x = (x_{ij}) \in {}_2({}_0BV^I_\sigma)$. Then for any given $\epsilon > 0$ we have

$$\{(i,j)\in\mathbb{N}\times\mathbb{N}: |\phi_{mnij}(x)|\geqslant\epsilon\}\in I.$$

Now let

$$A_1 = \{(i, j) \in \mathbb{N} \times \mathbb{N} : |\phi_{mnij}(x)| < \epsilon\} \in I,$$

be such that $A_1^c \in I$. Now consider, for $\rho > 0$,

$$M(\frac{|\phi_{mnij}(x)|}{\rho}) = \frac{|\phi_{mnij}(x)|}{\rho}$$
 $< \frac{\epsilon}{\rho} < \epsilon.$

 $\Rightarrow I - \lim M(\frac{|\phi_{mnij}(x)|}{\rho}) = 0$, which implies that $x = (x_{ij}) \in {}_2({}_0BV^I_\sigma(M))$. Hence we have

$$_{2}(_{0}BV_{\sigma}^{I}) \subseteq _{2}(_{0}BV_{\sigma}^{I}(M)).$$
 $\Rightarrow X \subseteq X(M)$

and the other cases will be proved similarly.

Theorem 2.3. For any Orlicz function M, the spaces $_2(_0BV_\sigma^I(M))$ and $_2(_0M_{BV_\sigma}^I)$ are solid and monotone.

Proof. Here we consider $_2(_0BV_\sigma^I)$ and for $_2(_0BV_\sigma^I(M))$ the proof shall be similar. Let $x=x_{ij}\in _2(_0BV_\sigma^I(M))$ be an arbitrary element $\Rightarrow \exists \rho>0$ such that

$$I - \lim_{ij} M(\frac{|\phi_{mnij}(x)|}{\rho}) = 0.$$

Let α_{ij} be a sequence of scalars with $|\alpha_{ij}| \leq 1$ for $i, j \in \mathbb{N}$. Now, M is an Orlicz function. Therefore

$$M(rac{|lpha_{ij}\phi_{mnij}(x)|}{
ho}) = M(rac{|lpha_{ij}||\phi_{mnij}(x)|}{
ho}) \ \leqslant |lpha_{ij}|M(rac{|\phi_{mnij}(x)|}{
ho})$$

 $\Rightarrow M(\frac{|\alpha_{ij}\phi_{mnij}(x)|}{\rho}) \leqslant M(\frac{|\phi_{mnij}(x)|}{\rho}) \text{ for all } i, j \in \mathbb{N}.$

$$\Rightarrow I - \lim_{ij} M(\frac{|\alpha_{ij}\phi_{mnij}(x)|}{\rho}) = 0.$$

Thus we have $(\alpha_{ij}x_{ij}) \in {}_2({}_0BV^I_\sigma(M))$. Hence ${}_2({}_0BV^I_\sigma(M))$ is solid. Therefore ${}_2({}_0BV^I_\sigma(M))$ is monotone. Since every solid sequence space is monotone.

Theorem 2.4. For any Orlicz function M,the space $_2BV_{\sigma}^I(M)$ and $_2(M_{BV_{\sigma}^I}(M))$ are neither solid nor monotone in general.

Proof. Here we give counter example for establishment of this result. Let $X = {}_2BV_\sigma^I$ and ${}_2(M_{BV_\sigma^I})$. Let us consider $I = I_f$ and M(x) = x, for all $x = x_{ij} \in [0, \infty)$. Consider, the K-step space $X_K(M)$ of X(M) defined as follows:

Let $x = (x_{ij}) \in X(M)$ and $y = (y_{ij}) \in X_K(M)$ be such that $(y_{ij}) = (x_{ij})$, if i,j is even and $(y_{ij}) = 0$, otherwise.

Consider the sequence (x_{ij}) defined by $(x_{ij}) = 1$ for all $i, j \in \mathbb{N}$. Then $x = (x_{ij}) \in {}_{2}BV_{\sigma}^{I}(M)$ and ${}_{2}M_{BV_{\sigma}^{I}}(M)$, but K-step space preimage does not belong to $BV_{\sigma}^{I}(M)$ and ${}_{2}M_{BV_{\sigma}}^{I}(M)$. Thus ${}_{2}BV_{\sigma}^{I}(M)$ and ${}_{2}M_{BV_{\sigma}}^{I}(M)$ are not monotone and hence they are not solid.

Theorem 2.5. For an Orlicz function M, the spaces ${}_2BV^I_\sigma(M)$ and ${}_2BV^I_\sigma(M)$ are sequence algebra.

Proof. Let $x=(x_{ij}), y=(y_{ij})\in {}_2({}_0(BV^I_\sigma(M)))$ be any two arbitrary elements. $\Rightarrow \rho_1, \rho_2 > 0$ such that,

$$I - \lim_{ij} M(\frac{|\phi_{mnij}(x)|}{\rho_1}) = 0,$$

and

$$I - \lim_{ij} M(\frac{|\phi_{mnij}(y)|}{\rho_2}) = 0.$$

Let $\rho = \rho_1 \rho_2 > 0$. Then

$$\begin{split} M(\frac{|\phi_{mnij}(x) \ \phi_{mnij}(y)|}{\rho}) &= M(\frac{|\phi_{mnij}(x) \ \phi_{mnij}(y)|}{\rho_1 \rho_2}) \\ \Rightarrow I - \lim_{ij} M(\frac{|\phi_{mnij}(x) \ \phi_{mnij}(y)|}{\rho}) &= 0. \end{split}$$

Therefore we have $(x_{ij}y_{ij}) \in {}_{2}({}_{0}BV^{I}_{\sigma}(M))$. Hence ${}_{2}({}_{0}BV^{I}_{\sigma}(M))$ is sequence algebra.

Theorem 2.6. For any Orlicz function M, the spaces $_2(_0BV_\sigma^I(M))$ and $_2BV_\sigma^I(M)$ are not convergence free.

Proof. To show this let $I = I_f$ and M(x) = x, for all $x = [0, \infty)$. Now consider the double sequence $(x_{ij}), (y_{ij})$ which defined as follows:

$$x_{ij} = \frac{1}{i+j}$$
 and $y_{ij} = i+j, \forall i, j \in \mathbb{N}$.

Then we have (x_{ij}) belong to both $_2(_0BV^I_\sigma(M))$ and $_2BV^I_\sigma(M)$, but (y_{ij}) does not belong to $_2(_0BV^I_\sigma(M))$ and $_2BV^I_\sigma(M)$. Hence, the spaces $_2(_0BV^I_\sigma(M))$ and $_2BV^I_\sigma(M)$ are not convergence free.

Theorem 2.7. Let M be an Orlicz function. Then

$$_{2}(_{0}BV_{\sigma}^{I}(M))\subseteq _{2}BV_{\sigma}^{I}(M)\subseteq _{2}(_{\infty}BV_{\sigma}^{I}(M)).$$

Proof. For this let us consider $x=(x_{ij})\in {}_2({}_0BV^I_\sigma(M))$. It is obvious that it must belong to ${}_2BV^I_\sigma(M)$. Now consider

$$M\Big(rac{|\phi_{mnij}(x)-L|}{
ho}\Big)\leqslant M(rac{|\phi_{mnij}(x)|}{
ho}) \ + \ M\Big(rac{|L|}{
ho}\Big).$$

Now taking the limit on both sides we get

$$I - lim_{ij}M(\frac{|\phi_{mnij}(x) - L|}{\rho}) = 0.$$

Hence $x = (x_{ij}) \in {}_{2}BV_{\sigma}^{I}(M)$.

Now it remains to show that $_2(BV_{\sigma}^I(M)) \subseteq _2(_{\infty}BV_{\sigma}^I(M))$. For this let us consider $x = (x_{ij}) \in _2BV_{\sigma}^I(M) \Rightarrow \exists \rho > 0 \text{ s.t}$

$$I - \lim_{ij} M\left(\frac{|\phi_{mnij}(x) - L|}{\rho}\right) = 0.$$

Now consider

$$M\left(\frac{|\phi_{mnij}(x)|}{
ho}\right) \leqslant M\left(\frac{|\phi_{mnij}(x)-L|}{
ho}\right) + M\left(\frac{|L|}{
ho}\right).$$

Now taking the supremum on both sides we get

$$\sup_{ij} M(\frac{|\phi_{mnij}(x)|}{\rho}) < \infty.$$

Hence
$$x = (x_{ij}) \in {}_{2}(_{\infty}BV^{I}_{\sigma}(M)).$$

Acknowledgements

The authors would like to record their gratitude to the reviewer for his careful reading and making some useful corrections which improved the presentation of the paper.

References

- Ahmad, Z.U. and Mursaleen (1988). An application of Banach Limits. *Proceedings of the American Mathematical Society* **103**(1), 244–246.
- Bhardwaj, V. K. and N. Singh (2000). Some sequence spaces defined by Orlicz functions. *Demonstratio Math.* **33**(3), 104–110.
- Et, M. (2001). On some new Orlicz spaces. J. Analysis (9), 21-28.
- Habil, E.D. (2006). Double sequences and double series. *The Islamic University Journal, Series of Natural Studies and Engineering* **14**, 1–33.
- Hazarika, B. and A. Esi (2013). On some I-Convergent generalized difference lacunary double sequence spaces defined by Orlicz functions. *Acta Scientiarum. Technology* **35**(3), 104–110.
- Khan, V.A. (2008). On a new sequence space defined by Orlicz function. *Communications de la Faculté des Sciences de l'Université d'Ankara Séries A* **57**(2), 25–33.
- Khan, V.A. and K. Ebadullah (2011). On some i-convergent sequences spaces defined by modullus functions. *Theory and Applications of Mathematics and Computer Science* 1(2), 22–30.
- Khan, V.A. and K. Ebadullah (2012). I-convergent sequences spaces defined by sequence of moduli. *Journal of Mathematical and Computational Science* **2**(2), 265–273.
- Khan, V.A. and N. Khan (2013). On a new i-convergent double sequence space. *Hindawi Publication Corporation International Journal of Analysis* **2013**(ID 126163), 7 pages.
- Kostyrko, P., T. Salat and W. Wilczynski (2000). I-convergence. Raal Analysis Analysis Exchange 26(2), 669-686.
- Lindenstrauss, J. and L. Tzafriri (1971). On Orlicz sequence space. Israel J.Mathematica 101, 379-390.
- Lorentz, G.G. (1948). A contribution to the theory of divergent series. Acta Mathematica 80(6), 167–190.
- Maddox, I. J. (1970). Elements of functional analysis [by] I. J. Maddox. Cambridge U.P London.
- Mursaleen, M. (1983). On some new invariant matrix methods of summability. *The Quarterly Journal of Mathematics* **34**(133), 77–86.
- Parshar, S. D. and B. Choudhary (1994). Sequence spaces defined by Orlicz function. *Indian J, Pure Appl. Math.* (25), 419–428.
- Raimi and Ralph A. (1963). Invariant means and invariant matrix methods of summability. *Duke Math. J.* **30**(1), 81–94.
- Schaefer, Paul (1972). Infinite matrices and invariant means. *Proceedings of the American Mathematical Society* **36**(1), 104–110.
- Tripathy, B.C. and B. Hazarika (2011). Some i-convergent sequence spaces defined by Orlicz function. *Acta Mathematicae Applicatae Sinica* **27**(1), 149–154.