

Theory and Applications of Mathematics & Computer Science

(ISSN 2067-2764, EISSN 2247-6202) http://www.uav.ro/applications/se/journal/index.php/tamcs

Theory and Applications of Mathematics & Computer Science 8 (1) (2018) 6 – 23

Coefficient Inequalities for Some Subclasses of Analytic Functions Associated with Conic Domains Involving *q*-calculus

Sibel Yalçın^{a,*}, Saqib Hussain^b, Shahid Khan^c

^aDepartment of Mathematics, Faculty of Arts and Science, Uludag University, 16059, Bursa, Turkey ^bDepartment of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan ^cDepartment of Mathematics, Riphah International University Islamabad, Pakistan

Abstract

Main purpose of this paper is to define and study some new classes of analytic functions associated with conic type regions. By using Salagean q-differential operator we investigate several interesting properties of these newly defined classes. Comparison of new results with those that were obtained in earlier investigation are given as Corollaries.

Keywords: q-differential operator, Salagean *q*-differential operator, Janowski functions, *k*-uniformly convex functions, *k*-starlike functions, close-to-convex functions, conic domain. 2010 MSC: 30C45, 30C50.

1. Introduction

Let \mathcal{A} denote the class of functions f analytic in the open unit disc $E = \{z : z \in \mathbb{C}, |z| < 1\}$ and satisfying the normalization condition f(0) = f'(0) - 1 = 0. Thus, the functions in \mathcal{A} are represented by the Taylor-Maclaurin series expansion given by

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad z \in E.$$
 (1.1)

Let S be the subset of \mathcal{A} consisting of the functions that are univalent in E. The convolution (Hadamard product) of functions $f, g \in \mathcal{A}$ is defined by

$$(f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n, \quad z \in E,$$

Email addresses: syalcin@uludag.edu.tr (Sibel Yalçın), saqib_math@yahoo.com (Saqib Hussain), shahidmath761@gmail.com (Shahid Khan)

^{*}Corresponding author

where f(z) is given by (1.1) and

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n, \quad z \in E.$$

For two functions $f, g \in \mathcal{A}$, we say that f is subordinate to g in E, denoted by

$$f(z) < g(z)$$
 $(z \in E)$,

if there exists a function w where

$$w(0) = 0, |w(z)| < 1, (z \in E),$$

such that

$$f(z) = g(w(z)), \quad (z \in E).$$

If g is univalent in E, then it follows that

$$f(z) < g(z)$$
 $(z \in E)$, $\Rightarrow f(0) = 0$ and $f(E) \subset g(E)$.

For more detail see (Miller & Mocanu, 2000). A function p analytic in E and of the form

$$p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n \in \mathcal{P}[A, B] \Leftrightarrow p(z) < \frac{1 + Az}{1 + Bz}$$

where $-1 \le B < A \le 1$. This class was introduced and investigated by Janowski (Janowski, 1973). In particular, if A = 1 and B = -1, we obtain the class \mathcal{P} of functions with a positive real part (see (Goodman, 1983)). The classes \mathcal{P} and $\mathcal{P}[A, B]$ are connected by the relation

$$p(z) \in \mathcal{P} \Leftrightarrow \frac{(A+1)p(z) - (A-1)}{(B+1)p(z) - (B-1)} \in \mathcal{P}[A, B].$$

Now consider, for $k \ge 0$, the classes k - CV and k - ST of k-uniformly convex functions and corresponding k-starlike functions, respectively, introduced by Kanas and Wisniowska. For some details, see (Kanas, 2003), (Kanas & Wisniowska, 2000), (Kanas & Wisniowska, 1999). Kanas and Wisniowska (Kanas & Wisniowska, 2000), (Kanas & Wisniowska, 1999) introduced the conic domain Ω_k , $k \ge 0$ as

$$\Omega_k = \left\{ u + iv : u > k \sqrt{(u-1)^2 + v^2} \right\}.$$

We note that Ω_k represents the conic region bounded successively by the imaginary axis (k = 0), the right branch of hyperbola (0 < k < 1), a parabola for k = 1, and ellipse for k > 1. The extremal functions for these conic regions are

$$p_{k}(z) = \begin{cases} \frac{1+z}{1-z} & k = 0, \\ 1 + \frac{2}{\pi^{2}} \left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2} & k = 1, \\ 1 + \frac{2}{1-k^{2}} \sinh^{2} \left\{\frac{2}{\pi} \left(\arccos k\right) \arctan h \sqrt{z}\right\} & 0 < k < 1, \\ 1 + \frac{1}{k^{2}-1} \sin \left(\frac{\pi}{2R(t)} \int_{0}^{u(z)} \frac{dx}{\sqrt{1-x^{2}}\sqrt{1-t^{2}x^{2}}}\right) + \frac{1^{2}}{k^{2}-1} & k > 1, \end{cases}$$
(1.2)

where

$$u(z) = \frac{z - \sqrt{t}}{1 - \sqrt{t}z}, \quad z \in E,$$

and $t \in (0, 1)$ is chosen such that $k = \cosh(\pi R'(t)/(4R(t)))$. Here R(t) is Legender's complete elliptic integral of first kind and $R'(t) = R(\sqrt{1-t^2})$ and R'(t) is the complementary integral of R(t) for details see (Ahiezer, 1970), (Hussain *et al.*, 2017), (Kanas & Wisniowska, 2000), (Kanas & Wisniowska, 1999). If $p_k(z) = 1 + Q_1(k)z + Q_2(k)z^2 + ..., z \in E$. Then it was shown in (Kanas & Wisniowska, 2000) that for (1.2) one can have

$$Q_{1} := Q_{1}(k) = \begin{cases} \frac{2A^{2}}{1-k^{2}} & 0 \le k < 1, \\ \frac{8}{\pi^{2}} & k = 1, \\ \frac{\pi^{2}}{4(k^{2}-1)\sqrt{i(1+t)R^{2}(t)}} & k > 1, \end{cases}$$
(1.3)

with $A = \frac{2}{\pi} \arccos t$.

The classes k - UCV and k - ST are defined as follows.

A function $f(z) \in \mathcal{A}$ is said to be in the class k - UCV, if and only if,

$$\frac{\left(zf'(z)\right)'}{f'(z)} < p_k(z), \ z \in E, \ k \ge 0.$$

A function $f(z) \in \mathcal{A}$ is said to be in the class k - ST, if and only if,

$$\frac{zf'(z)}{f(z)} < p_k(z), \quad z \in E, \ k \ge 0.$$

For more study (see (Srivastava *et al.*, 2012), (Srivastava *et al.*, 2009), (Srivastava *et al.*, 2007)). These classes were then generalized to $KD(k,\alpha)$ and $SD(k,\alpha)$ respectively by Shams et al. (Shams *et al.*, 2004) subject to the conic domain $G(k,\alpha)$, $k \ge 0$, $0 \le \alpha < 1$, which is

$$G(k, \alpha) = \{w : \Re(w) > k | w - 1 | + \alpha \}.$$

Now using the concepts of Janowski functions and the conic domain, Noor and Malik (Noor & Malik, 2011) define the following

Definition 1.1. (See (Noor & Malik, 2011)) A function p(z) is said to be in the class $k - \mathcal{P}[A, B]$, if and only if,

$$p(z) < \frac{(A+1)p_k(z) - (A-1)}{(B+1)p_k(z) - (B-1)}, \quad k \ge 0,$$

where $p_k(z)$ is defined in (1.2) and $-1 \le B < A \le 1$. Geometrically, the function $p \in k - \mathcal{P}[A, B]$ takes all values from the domain $\Omega_k[A, B]$, $1 \le B < A \le 1$, $k \ge 0$ which is defined as:

$$\Omega_k[A,B] = \left\{ w : \Re\left(\frac{(B-1)w - (A-1)}{(B+1)w - (A+1)}\right) > k \left| \frac{(B-1)w - (A-1)}{(B+1)w - (A+1)} - 1 \right| \right\},\,$$

or equivalently $\Omega_k[A, B]$ is a set of numbers w = u + iv such that

$$\left[\left(B^2 - 1 \right) \left(u^2 + v^2 \right) - 2 \left(AB - 1 \right) u + \left(A^2 - 1 \right) \right]^2$$
> $k^2 \left[\left(-2 \left(B + 1 \right) \left(u^2 + v^2 \right) + 2 \left(A + B + 2 \right) u - 2 \left(A + 1 \right) \right)^2 + 4 \left(A - B \right)^2 v^2 \right].$

This domain represents the conic type regains for detail see (Noor & Malik, 2011), (Noor *et al.*, 2017). It can be easily seen that $0 - \mathcal{P}[A, B] = \mathcal{P}[A, B]$ introduced in (Janowski, 1973) and $k - \mathcal{P}[1, -1] = \mathcal{P}(p_k)$ introduced in (Kanas & Wisniowska, 1999).

For any non-negative integer n, the q-integer number n, $[n]_q$ is defined by:

$$[n]_q = \frac{1 - q^n}{1 - q} = 1 + q + \dots + q^{n-1}, \quad [0]_q = 0.$$

The q-number shifted factorial is defined by [0]! = 1 and $[n]_q! = [1]_q[2]_q \dots [n]_q$. Clearly, $\lim_{q \to 1^-} [n]_q = n$ and $\lim_{q \to 1^-} [n]_q! = n!$. In general we will denote $[t]_q = \frac{1-q^t}{1-q}$ also for a non-integer number.

Definition 1.2. Let $f \in \mathcal{A}$, and let the q-derivative operator or q-difference operator be defined by

$$\partial_q f(z) = \frac{f(qz) - f(z)}{(q-1)z} \qquad (z \in E).$$

It is easy to check that for $n \in \mathbb{N} := \{1, 2, ...\}$ and $z \in E$

$$\partial_q z^n = [n]_q z^{n-1}.$$

In the field of Geometric Function Theory, various subclasses of the normalized analytic function class \mathcal{A} have been studied from different viewpoints. The q-calculus as well as the fractional q-calculus provide important tools that have been used in order to investigate various subclasses of \mathcal{A} . Moreover, in recent years, such q-calculus operators as the fractional q-integral and fractional q-derivative operators were used to construct several subclasses of analytic functions (see, for example, (Altınkaya & Yalçın, 2017), (Magesh $et\ al.$, 2018), (Purohit & Raina, 2013), (Srivastava, 1989)).

Throughout this paper we assume q to be a fixed number between 0 and 1.

Definition 1.3. (See (Govindaraj & Sivasubramanian, 2018)) For $f \in \mathcal{A}$, let Salagean q-differential operator be defined as follows:

$$S_q^0 f(z) = f(z), \ S_q^1 f(z) = z \partial_q f(z), ..., S_q^m f(z) = z \partial_q \left(S_q^{m-1} f(z) \right).$$
 (1.4)

A simple calculation implies

$$S_q^m f(z) = f(z) * F_{m,q}(z), z \in E, m \in \mathbb{N}U\{0\} = \mathbb{N}_0.$$

where

$$F_{m,q}(z) = z + \sum_{n=2}^{\infty} [n]_q^m z^n.$$
 (1.5)

Making use of (1.4) and (1.5), the power series of $S_q^m f(z)$ for f of the form (1.1) is given by

$$S_q^m f(z) = z + \sum_{n=2}^{\infty} [n]_q^m a_n z^n.$$

Note that

$$\lim_{q \to 1^{-}} F_{m,q}(z) = z + \sum_{n=2}^{\infty} n^{m} z^{n}$$

and

$$\lim_{q \to 1^{-}} S_{q}^{m} f(z) = z + \sum_{n=2}^{\infty} n^{m} a_{n} z^{n}$$

which is the familiar Salagean derivative (Salagean, 1983).

Motivated by the recent work presented by Noor and Malik (Noor & Malik, 2011) and (Mahmood *et al.*, 2017), we define some classes of analytic functions associated with conic domains and by using Salagean *q*-differential operator.

Definition 1.4. A function $f(z) \in \mathcal{A}$ is said to be in the class $k - \mathcal{ST}_q(m, C, D)$, $k \ge 0, -1 \le D < C \le 1$, if and only if

$$\Re\left(\frac{(D-1)G_{m,q}(z)-(C-1)}{(D+1)G_{m,q}(z)-(C+1)}\right) > k \left| \frac{(D-1)G_{m,q}(z)-(C-1)}{(D+1)G_{m,q}(z)-(C+1)} - 1 \right|,$$

where

$$G_{m,q}(z) = \frac{S_q^{m+1} f(z)}{S_q^m f(z)},$$

or equivalently

$$G_{m,a}(z) \in k - P[C, D].$$

Definition 1.5. A function $f(z) \in \mathcal{A}$ is said to be in the class $k - CV_q(m, C, D)$, $k \ge 0$, $-1 \le D < C \le 1$, if and only if

$$\Re\left(\frac{(D-1)H_{m,q}(z)-(C-1)}{(D+1)H_{m,q}(z)-(C+1)}\right) > k \left| \frac{(D-1)H_{m,q}(z)-(C-1)}{(D+1)H_{m,q}(z)-(C+1)}-1 \right|,$$

where

$$H_{m,q}(z) = \frac{z\partial_q S_q^{m+1} f(z)}{S_q^{m+1} f(z)},$$

or equivalently,

$$H_{m,q}(z) \in k - P[C, D].$$

It can be easily seen that

$$f(z) \in k - CV_q(m, C, D) \iff z\partial_q f(z) \in k - ST_q(m, C, D).$$
 (1.6)

Special cases:

- (i) For $q \to 1^-$, and m = 0, then the classes $k \mathcal{ST}_q(m, C, D)$ and $k \mathcal{CV}_q(m, C, D)$ reduce into the classes $k \mathcal{ST}(C, D)$ and $k \mathcal{CV}(C, D)$ introduced by Noor and Malik in (Noor & Malik, 2011).
- (ii) For $q \to 1^-$, C = 1, D = -1, and m = 0, then the classes $k \mathcal{ST}_q(m, C, D)$ and $k \mathcal{CV}_q(m, C, D)$ reduce into the classes $k \mathcal{ST}$ and $k \mathcal{UCV}$ introduced by Kanas and Wisniowska in (Kanas & Wisniowska, 2000), (Kanas & Wisniowska, 1999).
- (iii) For $q \to 1^-$, $C = 1 2\alpha$, D = -1, and m = 0, then the classes $k \mathcal{ST}_q(m, C, D)$ and $k CV_q(m, C, D)$ reduce into the classes $SD(k, \alpha)$ and $KD(k, \alpha)$ introduced by Shams et al. in (Shams *et al.*, 2004).
- (iv) For $q \to 1^-$, k = 0, and m = 0, then the classes $k ST_q(m, C, D)$ and $k CV_q(m, C, D)$ reduce into the classes $S^*(C, D)$ and C(C, D) introduced by Janowski (Janowski, 1973).

Definition 1.6. A function $f(z) \in \mathcal{A}$ is said to be in the class $k - \mathcal{UK}_q(m, A, B, C, D)$, if and only if, for $k \ge 0$, $-1 \le D < C \le 1$, $-1 \le B < A \le 1$, there exists $g(z) \in k - \mathcal{ST}_q(m, C, D)$, such that

$$\Re\left(\frac{(B-1)L_{m,q}(z)-(A-1)}{(B+1)L_{m,q}(z)-(A+1)}\right) > k \left| \frac{(B-1)L_{m,q}(z)-(A-1)}{(B+1)L_{m,q}(z)-(A+1)}-1 \right|,$$

where

$$L_{m,q}(z) = \frac{S_q^{m+1} f(z)}{S_q^m g(z)},$$

or equivalently

$$L_{m,a}(z) \in k - \mathcal{P}[A, B].$$

Definition 1.7. A function $f(z) \in \mathcal{A}$ is said to be in the class $k - \mathcal{U}Q_q(m, A, B, C, D)$, if and only if, for $k \ge 0$, $-1 \le D < C \le 1$, $-1 \le B < A \le 1$, there exists $g(z) \in k - \mathcal{CV}_q(m, C, D)$, such that

$$\Re\left(\frac{(B-1)K_{m,q}(z)-(A-1)}{(B+1)K_{m,q}(z)-(A+1)}\right) > k \left| \frac{(B-1)K_{m,q}(z)-(A-1)}{(B+1)K_{m,q}(z)-(A+1)}-1 \right|,$$

where

$$K_{m,q}(z) = \frac{z\partial_q S_q^{m+1} f(z)}{S_q^{m+1} g(z)},$$

or equivalently,

$$K_{m,q}(z) \in k - \mathcal{P}[A, B].$$

It can be easily seen that

$$f(z) \in k - \mathcal{U}Q_q(m, A, B, C, D) \iff z\partial_q f(z) \in k - \mathcal{U}\mathcal{K}_q(m, A, B, C, D).$$
 (1.7)

Special cases:

- (i) For $q \to 1^-$, and m = 0, then the classes $k \mathcal{UK}_q(m, A, B, C, D)$ and $k \mathcal{UQ}_q(m, A, B, C, D)$ reduce into the classes $k \mathcal{UK}(A, B, C, D)$ and $k \mathcal{UQ}(A, B, C, D)$ introduced by Mahmood at al. in (Mahmood *et al.*, 2017).
- (ii) For $q \to 1^-$, $A = 1 2\beta$, B = -1, $C = 1 2\gamma$, D = -1 and m = 0, then the classes $k \mathcal{UK}_q(m, A, B, C, D)$ and $k \mathcal{UQ}_q(m, A, B, C, D)$ reduce into the classes $k \mathcal{UK}(\beta, \gamma)$ and $k \mathcal{UQ}(\beta, \gamma)$ introduced by Aghalary Aghalary and Azadi in (Aghalary & Azadi, 2015).
- (iii) For $q \to 1^-$, $A = 1 2\beta$, B = -1, $C = 1 2\gamma$, D = -1, k = 0 and m = 0, then the classes $k \mathcal{UK}_q(m, A, B, C, D)$ and $k \mathcal{UQ}_q(m, A, B, C, D)$ reduce into the classes $\mathcal{K}(\beta, \gamma)$ and $\mathcal{Q}(\beta, \gamma)$ introduced by Libera and Noor in (Libera, 1964), (Noor, 1987).
- (iv) For $q \to 1^-$, k = 0, and m = 0, then the class $k \mathcal{UK}_q(m, A, B, C, D)$ reduce into the class $\mathcal{K}(A, B, C, D)$ introduced by Silvia in (Silvia, 1983).
- (v) For $q \to 1^-$, k = 0, C = 1, D = -1, and m = 0, then the class $k \mathcal{U}Q_q(m, A, B, C, D)$ reduce into the class Q(A, B) introduced by Noor in (Noor, 1989).
- (vi) For $q \to 1^-$, A = 1, B = -1, C = 1, D = -1, and m = 0, then the classes $k \mathcal{UK}_q(m, A, B, C, D)$ and $k \mathcal{UQ}_q(m, A, B, C, D)$ reduce into the classes $k \mathcal{UK}$ and $k \mathcal{UQ}$ introduced by Acu in (Acu, 2006).
- (vii) For $q \to 1^-$, k = 0, A = 1, B = -1, C = 1, D = -1, and m = 0, then the classes $k \mathcal{UK}_q(m, A, B, C, D)$ and $k \mathcal{UQ}_q(m, A, B, C, D)$ reduced into the classes \mathcal{K} and Q introduced by Kaplan and Noor et al. in (Kaplan, 1952), (Noor *et al.*, 2009).
- **Lemma 1.1.** (See (Rogosinski, 1943)) Let $h(z) = 1 + \sum_{n=1}^{\infty} c_n z^n$ be subordinate to $H(z) = 1 + \sum_{n=1}^{\infty} C_n z^n$. If H(z) is univalent in E and H(E) is convex, then

$$|c_n| \leq |C_1|, \quad n \geq 1.$$

Lemma 1.2. (See (Noor & Malik, 2011)) Let $h(z) = 1 + \sum_{n=1}^{\infty} c_n z^n \in k - \mathcal{P}[A, B]$, then

$$|c_n| \le |Q_1(k, A, B)|, |Q_1(k, A, B)| = \frac{A - B}{2} |Q_1(k)|,$$

where $|Q_1(k)|$ is given by (1.3).

2. Main Results

Theorem 2.1. A function $f \in \mathcal{A}$ and of the form (1.1) is in the class $k - \mathcal{ST}_q(m, C, D)$, if it satisfies the condition

$$\sum_{n=2}^{\infty} \left\{ 2(k+1)(q[n-1]_q) + \left| [n]_q (D+1) - (C+1) \right| \right\} [n]_q^m |a_n| \le C - D, \tag{2.1}$$

where $-1 \le D < C \le 1$, $k \ge 0$.

Proof. Assuming that (2.1) holds, then it suffices to show that

$$k\left|\frac{(D-1)G_{m,q}(z)-(C-1)}{(D+1)G_{m,q}(z)-(C+1)}-1\right|-\Re\left\{\frac{(D-1)G_{m,q}(z)-(C-1)}{(D+1)G_{m,q}(z)-(C+1)}-1\right\}<1.$$

We have

$$k \left| \frac{(D-1)G_{m,q}(z) - (C-1)}{(D+1)G_{m,q}(z) - (C+1)} - 1 \right| - \Re \left\{ \frac{(D-1)G_{m,q}(z) - (C-1)}{(D+1)G_{m,q}(z) - (C+1)} - 1 \right\}$$

$$\leq (k+1) \left| \frac{(D-1)G_{m,q}(z) - (C-1)}{(D+1)G_{m,q}(z) - (C+1)} - 1 \right|$$

$$= (k+1) \left| \frac{(D-1)S_q^{m+1}f(z) - (C-1)S_q^mf(z)}{(D+1)S_q^{m+1}f(z) - (C+1)S_q^mf(z)} - 1 \right|$$

$$= 2(k+1) \left| \frac{S_q^mf(z) - S_q^{m+1}f(z)}{(D+1)S_q^{m+1}f(z) - (C+1)S_q^mf(z)} \right|$$

$$= 2(k+1) \left| \frac{\sum_{n=2}^{\infty} ([n]_q - 1) [n]_q^m a_n z^n}{(D-C)z + \sum_{n=2}^{\infty} \left\{ (D+1) [n]_q - (C+1) \right\} [n]_q^m a_n z^n} \right|$$

$$\leq 2(k+1) \left\{ \frac{\sum_{n=2}^{\infty} q [n-1]_q [n]_q^m |a_n|}{C-D-\sum_{n=2}^{\infty} |(D+1)[n]_q - (C+1)| [n]_q^m |a_n|} \right\}.$$

The last expression is bounded above by 1 if

$$\sum_{n=2}^{\infty} \left\{ 2(k+1)q \left[n-1 \right]_q + \left| \left[n \right]_q (D+1) - (C+1) \right| \right\} \left[n \right]_q^m |a_n| \le C - D.$$

This completes the proof.

When $q \to 1^-$, m = 0, we have the following known result, proved by Noor and Malik in (Noor & Malik, 2011).

Corollary 2.1. A function $f \in \mathcal{A}$ and of the form (1.1) is in the class $k - \mathcal{ST}(C, D)$, if it satisfies the condition

$$\sum_{n=2}^{\infty} \left\{ 2(k+1)(n-1) + |n(D+1) - (C+1)| \right\} |a_n| \le |D-C|.$$

When $q \to 1^-$, m = 0, $C = 1 - 2\alpha$, D = -1 with $0 \le \alpha < 1$, then we have the following known result, proved by Shams et al. in (Shams *et al.*, 2004).

Corollary 2.2. A function $f \in \mathcal{A}$ and of the form (1.1) is in the class $SD(k, \alpha)$, if it satisfies the condition

$$\sum_{n=2}^{\infty} \left\{ n(k+1) - (k+\alpha) \right\} |a_n| \le 1 - \alpha,$$

where $0 \le \alpha < 1$ and $k \ge 0$.

When $q \to 1^-$, k = 0, m = 0, $C = 1 - 2\alpha$, D = -1 with $0 \le \alpha < 1$, then we have the following known result, proved by Silverman in (Silverman, 1975).

Corollary 2.3. A function $f \in \mathcal{A}$ and of the form (1.1) is in the class $S^*(\alpha)$, if it satisfies the condition

$$\sum_{n=2}^{\infty} \{n - \alpha\} |a_n| \le 1 - \alpha, \qquad 0 \le \alpha < 1.$$

Theorem 2.2. A function $f \in \mathcal{A}$ and of the form (1.1) is in the class $k-CV_q(m,C,D)$, if it satisfies the condition

$$\sum_{n=2}^{\infty} \left\{ 2(k+1)(q[n-1]_q) + \left| [n]_q (D+1) - (C+1) \right| \right\} [n]_q^{m+1} |a_n| \le C - D,$$

where $-1 \le D < C \le 1$, $k \ge 0$.

The proof follows immediately by using Theorem 2.1 and (1.6).

When $q \to 1^-$, m = 0, then, we have the following known result, proved by Noor and Malik in (Noor & Malik, 2011).

Corollary 2.4. A function $f \in \mathcal{A}$ and of the form (1.1) is in the class $k - \mathcal{UCV}(C, D)$, if it satisfies the condition

$$\sum_{n=2}^{\infty} n \left\{ 2(k+1)(n-1) + |n(D+1) - (C+1)| \right\} |a_n| \le C - D.$$

Theorem 2.3. If $f(z) \in k - \mathcal{ST}_q(m, C, D)$ and is of the form (1.1). Then

$$|a_n| \le \prod_{j=0}^{n-2} \left(\frac{\left| Q_1(k)(C-D) - 2q[j]_q \left[j+1 \right]_q^m D \right|}{2q \left[j+1 \right]_q \left[j+2 \right]_q^m} \right), \quad n \ge 2, \tag{2.2}$$

where $|Q_1(k)|$ is defined by (1.3).

Proof. By definition, for $f(z) \in k - \mathcal{ST}_q(m, C, D)$, we have

$$\frac{S_q^{m+1} f(z)}{S_q^m f(z)} = p(z), \tag{2.3}$$

where

$$p(z) \in k - P[C, D].$$

Now from (2.3), we have

$$S_q^{m+1}f(z) = S_q^m f(z)p(z),$$

which implies that

$$z + \sum_{n=2}^{\infty} [n]_{q}^{m+1} a_{n}z^{n} = \left(1 + \sum_{n=1}^{\infty} c_{n}z^{n}\right) \left(z + \sum_{n=2}^{\infty} [n]_{q}^{m} a_{n}z^{n}\right)$$

$$z + \sum_{n=2}^{\infty} [n]_{q}^{m+1} a_{n}z^{n} = \left(1 + \sum_{n=1}^{\infty} c_{n}z^{n}\right) \left(\sum_{n=1}^{\infty} [n]_{q}^{m} a_{n}z^{n}\right)$$

$$z + \sum_{n=2}^{\infty} [n]_{q}^{m+1} a_{n}z^{n} = \sum_{n=1}^{\infty} [n]_{q}^{m} a_{n}z^{n} + \left(\sum_{n=1}^{\infty} [n]_{q}^{m} a_{n}z^{n}\right) \left(\sum_{n=1}^{\infty} c_{n}z^{n}\right)$$

$$\sum_{n=2}^{\infty} \{[n]_{q} - 1\} [n]_{q}^{m} a_{n}z^{n} = \left(\sum_{n=1}^{\infty} [n]_{q}^{m} a_{n}z^{n}\right) \left(\sum_{n=1}^{\infty} c_{n}z^{n}\right)$$

$$\sum_{n=2}^{\infty} q [n-1]_{q} [n]_{q}^{m} a_{n}z^{n} = \left(\sum_{n=1}^{\infty} [n]_{q}^{m} a_{n}z^{n}\right) \left(\sum_{n=1}^{\infty} c_{n}z^{n}\right). \tag{2.4}$$

By using Cauchy product formula on R.H.S of (2.4), we have

$$\sum_{n=2}^{\infty} q [n-1]_q [n]_q^m a_n z^n = \sum_{n=1}^{\infty} \left[\sum_{j=1}^{n-1} [j]_q^m a_j c_{n-j} \right] z^n.$$
 (2.5)

Equating coefficients of z^n on both sides of (2.5), we have

$$q[n-1]_q[n]_q^m a_n = \sum_{j=1}^{n-1} [j]_q^m a_j c_{n-j}, \quad [1]_q^m = 1, \ a_1 = 1.$$

This implies that

$$|a_n| \le \frac{1}{q[n-1]_q[n]_q^m} \sum_{j=1}^{n-1} [j]_q^m |a_j| |c_{n-j}|, [1]_q^m = 1, a_1 = 1.$$

Using lemma (1.2), we have

$$|a_n| \le \frac{|Q_1(k)| (C - D)}{2q [n - 1]_q [n]_q^m} \sum_{j=1}^{n-1} [j]_q^m |a_j|, \qquad [1]_q^m = 1, a_1 = 1.$$
(2.6)

Now we prove that

$$\begin{split} &\frac{|Q_{1}(k)| \, (C-D)}{2q \, [n-1]_{q} \, [n]_{q}^{m}} \sum_{j=1}^{n-1} \big[j\big]_{q}^{m} \, \big| a_{j} \big| \\ & \leq \prod_{j=1}^{n-1} \left(\frac{\left| Q_{1}(k) (C-D) - 2q[j-1]_{q} \, [j]_{q}^{m} \, D \right|}{2q \, [j]_{q} \, [j+1]_{q}^{m}} \right), \\ &\frac{|Q_{1}(k)| \, (C-D)}{2q \, [n-1]_{q} \, [n]_{q}^{m}} \sum_{j=1}^{n-1} \big[j\big]_{q}^{m} \, \big| a_{j} \big| \\ & \leq \prod_{j=0}^{n-2} \left(\frac{\left| Q_{1}(k) (C-D) - 2q[j]_{q} \, [j+1]_{q}^{m} \, C \right|}{2q \, [j+1]_{q} \, [j+2]_{q}^{m}} \right). \end{split}$$

For this, we use the induction method.

For n = 2 from (2.6), we have

$$|a_2| \le \frac{|Q_1(k)|(C-D)}{2q[2]_q^m}.$$

From (2.2), we have

$$|a_2| \le \frac{|Q_1(k)|(C-D)}{2q[2]_q^m}.$$

For n = 3 from (2.6), we have

$$|a_3| \leq \frac{|Q_1(k)|(C-D)}{2q[2]_q[3]_q^m} \left\{ 1 + [2]_q^m |a_2| \right\}$$

$$\leq \frac{|Q_1(k)|(C-D)}{2q[2]_q[3]_q^m} \left\{ 1 + \frac{|Q_1(k)|(C-D)}{2q} \right\}.$$

From (2.2), we have

$$|a_{3}| \leq \frac{(C-D)|Q_{1}(k)|}{2q[2]_{q}^{m}} \left\{ \frac{|Q_{1}(k)(C-D) - 2q[2]_{q}^{m}D|}{2q[2]_{q}[3]_{q}^{m}} \right\}, \quad [1]_{q} = 1,$$

$$\leq \frac{(C-D)|Q_{1}(k)|}{2q[2]_{q}^{m}} \left\{ \frac{|Q_{1}(k)|(C-D) + 2q[2]_{q}^{m}|D|}{2q[2]_{q}[3]_{q}^{m}} \right\}$$

$$\leq \frac{(C-D)|Q_{1}(k)|}{2q[2]_{q}[3]_{q}^{m}} \left\{ 1 + \frac{|Q_{1}(k)|(C-D)}{2q[2]_{q}^{m}} \right\}.$$

Let the hypothesis be true for n = t.

From (2.6), we have

$$|a_t| \le \frac{|Q_1(k)|(C-D)}{2q[t-1]_q[t]_q^m} \sum_{j=1}^{t-1} [j]_q^m |a_j|, \ a_1 = 1, \ [1]_q^m.$$

From (2.2), we have

$$|a_{t}| \leq \prod_{j=0}^{t-2} \left(\frac{|Q_{1}(k)(C-D) - 2q[j]_{q} [j+1]_{q}^{m} D|}{2q [j+1]_{q} [j+2]_{q}^{m}} \right)$$

$$\leq \prod_{j=0}^{t-2} \left(\frac{|Q_{1}(k)(C-D) + 2q[j]_{q} [j+1]_{q}^{m}|}{2q [j+1]_{q} [j+2]_{q}^{m}} \right).$$

By the induction hypothesis, we have

$$\frac{|Q_{1}(k)|(C-D)}{2q[t-1]_{q}[t]_{q}^{m}} \sum_{j=1}^{t-1} [j]_{q}^{m} |a_{j}|$$

$$\leq \prod_{j=0}^{t-2} \left(\frac{|Q_{1}(k)(C-D) + 2q[j]_{q}[j+1]_{q}^{m}|}{2q[j+1]_{q}[j+2]_{q}^{m}} \right). \tag{2.7}$$

Multiplying both sides by

$$\frac{\left|Q_{1}(k)(C-D)+2q[t-1]_{q}[t]_{q}^{m}\right|}{2q[t+1]_{q}[t+2]_{q}^{m}},$$

we have

$$\begin{split} &\frac{\left|Q_{1}(k)(C-D)+2q[t-1]_{q}[t]_{q}^{m}\right|}{2q[t+1]_{q}[t+2]_{q}^{m}}\times\prod_{j=0}^{t-2}\left(\frac{\left|Q_{1}(k)(C-D)+2q[j]_{q}[j+1]_{q}^{m}\right|}{2q[j+1]_{q}[j+2]_{q}^{m}}\right)\\ &\geq &\left\{\frac{\left|Q_{1}(k)(C-D)+2q[t-1]_{q}[t]_{q}^{m}\right|}{2q[t+1]_{q}[t+2]_{q}^{m}}\right\}\times\frac{\left|Q_{1}(k)\right|(C-D)}{2q[t-1]_{q}[t]_{q}^{m}}\sum_{j=1}^{t-1}\left[j\right]_{q}^{m}\left|a_{j}\right|,\\ &\prod_{j=0}^{t-2}\left(\frac{\left|Q_{1}(k)(C-D)+2q[j]_{q}[j+1]_{q}^{m}\right|}{2q[j+1]_{q}[t+2]_{q}^{m}}\right)\\ &\geq &\left\{\frac{\frac{\left|Q_{1}(k)\right|(C-D)}{2q[t+1]_{q}[t+2]_{q}^{m}}\left\{\frac{\left|Q_{1}(k)\right|(C-D)}{2q[t-1]_{q}[t]_{q}^{m}}\sum_{j=1}^{t-1}\left[j\right]_{q}^{m}\left|a_{j}\right|\right\}}{2q[t-1]_{q}[t]_{q}^{m}}\sum_{j=1}^{t-1}\left[j\right]_{q}^{m}\left|a_{j}\right|\right\},\\ &\geq &\frac{\left|Q_{1}(k)\right|(C-D)}{2q[t+1]_{q}[t+2]_{q}^{m}}\left\{\frac{\left|Q_{1}(k)\right|(C-D)}{2q[t-1]_{q}[t]_{q}^{m}}\sum_{j=1}^{t-1}\left[j\right]_{q}^{m}\left|a_{j}\right|\right\},\\ &\prod_{j=0}^{t-2}\left(\frac{\left|Q_{1}(k)\right|(C-D)+2q[j]_{q}\left[j+1\right]_{q}^{m}}{2q[j+1]_{q}\left[j+2\right]_{q}^{m}}\right)\\ &\geq &\frac{\left|Q_{1}(k)\right|(C-D)}{2q[t+1]_{q}[t+2]_{q}^{m}}\left\{\left|a_{t}\right|+\sum_{j=1}^{t-1}\left[j\right]_{q}^{m}\left|a_{j}\right|\right\},\\ &=&\frac{\left|Q_{1}(k)\right|(C-D)}{2q[t+1]_{q}[t+2]_{q}^{m}}\left\{\left|a_{t}\right|+\sum_{j=1}^{t-1}\left[j\right]_{q}^{m}\left|a_{j}\right|\right\}. \end{split}$$

That is,

$$\frac{|Q_{1}(k)|(A-B)}{2q[t+1]_{q}[t+2]_{q}^{m}} \sum_{j=1}^{t} [j]_{q}^{m} |a_{j}|$$

$$\leq \prod_{j=0}^{t-2} \left(\frac{|Q_{1}(k)(C-D) + 2q[j]_{q}[j+1]_{q}^{m}|}{2q[j+1]_{q}[j+2]_{q}^{m}} \right).$$

which shows that inequality (2.7) is true for n = t + 1. Hence the required result.

When m = 0, $q \to 1^-$, we have the following known result, proved by Noor and Malik in (Noor & Malik, 2011).

Corollary 2.5. A function $f \in \mathcal{A}$ and of the form (1.1) is in the class $k - \mathcal{ST}[C, D]$, if it satisfies the condition

$$|a_n| \le \prod_{j=0}^{n-2} \left(\frac{|Q_1(k)(C-D) - 2jD|}{2(j+1)} \right).$$

When m = 0, $q \to 1^-$, C = 1, D = -1, then we have the following known result, proved by Kanas and Wisniowska in (Kanas & Wisniowska, 2000).

Corollary 2.6. A function $f \in \mathcal{A}$ and of the form (1.1) is in the class $k - \mathcal{ST}$, if it satisfies the condition

$$|a_n| \le \prod_{j=0}^{n-2} \left(\frac{|Q_1(k) + j|}{(j+1)} \right).$$

When m = 0, $q \to 1^-$, k = 0, then $Q_1(k) = 2$ and we get the following known result, proved in (Janowski, 1973).

Corollary 2.7. A function $f \in \mathcal{A}$ and of the form (1.1) is in the class $\mathcal{ST}[C, D]$, if it satisfies the condition

$$|a_n| \le \prod_{j=0}^{n-2} \left(\frac{|(C-D)-jD|}{(j+1)} \right), -1 \le D < C \le 1.$$

When m = 0, $q \to 1^-$, $C = 1 - 2\alpha$, D = -1, with $0 \le \alpha < 1$, then we have the following known result, proved by Shams et al. in (Shams et al., 2004).

Corollary 2.8. A function $f \in \mathcal{A}$ and of the form (1.1) is in the class $SD(k, \alpha)$, if it satisfies the condition

$$|a_n| \le \prod_{j=0}^{n-2} \left(\frac{|Q_1(k)(1-\alpha)+j|}{(j+1)} \right), -1 \le D < C \le 1.$$

Theorem 2.4. If $f(z) \in k - CV_a(m, C, D)$ and is of the form (1.1). Then

$$|a_n| \le \frac{1}{[n]_q} \prod_{j=0}^{n-2} \left(\frac{\left| Q_1(k)(C-D) - 2q[j]_q \left[j+1 \right]_q^m D \right|}{2q \left[j+1 \right]_a \left[j+2 \right]_q^m} \right), \qquad (n \ge 2).$$

The proof follows immediately by using Theorem (2.3) and the relation (1.6).

When m = 0, $q \to 1^-$, we have the following known result, proved by Noor and Sarfaraz in (Noor & Malik, 2011).

Corollary 2.9. A function $f \in \mathcal{A}$ and of the form (1.1) is in the class $k - \mathcal{UCV}[C, D]$, if it satisfies the condition

$$|a_n| \le \frac{1}{n} \prod_{j=0}^{n-2} \left(\frac{|Q_1(k)(C-D) - 2jD|}{2(j+1)} \right).$$

Theorem 2.5. A function $f \in \mathcal{A}$ and of the form (1.1) is in the class $k - \mathcal{UK}_q(m, A, B, C, D)$, if it satisfies the condition

$$\sum_{n=2}^{\infty} \left\{ 2(k+1) \left| b_n - [n]_q a_n \right| + \left| (B+1) [n]_q a_n - (A+1) b_n \right| \right\} [n]_q^m \le A - B, \tag{2.8}$$

where $-1 \le D < C \le 1$, $-1 \le B < A \le 1$, $k \ge 0$.

Proof. Assuming that (2.8) holds, then it suffices to show that

$$k\left|\frac{(B-1)L_{m,q}(z)-(A-1)}{(B+1)L_{m,q}(z)-(A+1)}-1\right|-\Re\left\{\frac{(B-1)L_{m,q}(z)-(A-1)}{(B+1)L_{m,q}(z)-(A+1)}-1\right\}<1.$$

We have

$$k \left| \frac{(B-1)L_{m,q}(z) - (A-1)}{(B+1)L_{m,q}(z) - (A+1)} - 1 \right| - \Re \left\{ \frac{(B-1)L_{m,q}(z) - (A-1)}{(B+1)L_{m,q}(z) - (A+1)} - 1 \right\}$$

$$\leq (k+1) \left| \frac{(B-1)L_{m,q}(z) - (A-1)}{(B+1)L_{m,q}(z) - (A+1)} - 1 \right|$$

$$= (k+1) \left| \frac{(B-1)S_q^{m+1}f(z) - (A-1)S_q^mg(z)}{(B+1)S_q^{m+1}f(z) - (A+1)S_q^mg(z)} - 1 \right|$$

$$= 2(k+1) \left| \frac{S_q^mg(z) - S_q^{m+1}f(z)}{(B+1)S_q^{m+1}f(z) - (A+1)S_q^mg(z)} \right|$$

$$= 2(k+1) \left| \frac{\sum_{n=2}^{\infty} \left\{ b_n - [n]_q a_n \right\} [n]_q^m z^n}{(B-A)z + \sum_{n=2}^{\infty} \left\{ (B+1)[n]_q a_n - (A+1)b_n \right\} [n]_q^m z^n} \right|$$

$$\leq 2(k+1) \left\{ \frac{\sum_{n=2}^{\infty} \left| b_n - [n]_q a_n \right| [n]_q^m}{A-B-\sum_{n=2}^{\infty} \left| (B+1)[n]_q a_n - (A+1)b_n \right| [n]_q^m} \right\}.$$

The last expression is bounded above by 1 if

$$\sum_{n=2}^{\infty} \left\{ 2(k+1) \left| b_n - [n]_q a_n \right| + \left| (B+1) [n]_q a_n - (A+1) b_n \right| \right\} [n]_q^m \le A - B.$$

This completes the proof.

When $q \to 1^-$, m = 0, we have the following known result, proved by Mahmood at al. (Mahmood *et al.*, 2017).

Corollary 2.10. A function $f \in \mathcal{A}$ and of the form (1.1) is in the class $k - \mathcal{UK}(A, B, C, D)$, if it satisfies the condition

$$\sum_{n=2}^{\infty} \left\{ 2(k+1) |b_n - na_n| + |(B+1)na_n - (A+1)b_n| \right\} \le A - B.$$

Theorem 2.6. A function $f \in \mathcal{A}$ and of the form (1.1) is in the class $k - \mathcal{U}Q_q(m, A, B, C, D)$, if it satisfies the condition

$$\sum_{n=2}^{\infty} [n]_q^{m+1} \left\{ 2(k+1) \left| b_n - [n]_q a_n \right| + \left| (B+1) [n]_q a_n - (A+1)b_n \right| \right\} \le A - B,$$

where $-1 \le D < C \le 1$, $-1 \le B < A \le 1$, $k \ge 0$.

The proof follows immediately by using Theorem 2.1 and (1.7).

When $q \to 1^-$, m = 0, we have the following known result, proved by Mahmood at al. (Mahmood *et al.*, 2017)

Corollary 2.11. A function $f \in \mathcal{A}$ and of the form (1.1) is in the class $k - \mathcal{UQ}(A, B, C, D)$, if it satisfies the condition

$$\sum_{n=2}^{\infty} n\left\{2(k+1)|b_n - na_n| + |(B+1)na_n - (A+1)b_n|\right\} \le A - B.$$

When $q \to 1^-$, m = 0, $A = 1 - 2\beta$, B = -1, C = 1, D = -1 with $0 \le \beta < 1$, then we have the following known result, proved by Subramanian et al. in (Subramanian et al., 2003).

Corollary 2.12. A function $f \in \mathcal{A}$ and of the form (1.1) is in the class $\mathcal{UQ}(\beta)$, g(z) = z, if it satisfies the condition

$$\sum_{n=2}^{\infty} n^2 |a_n| \le 1 - \beta.$$

Theorem 2.7. If $f(z) \in k - \mathcal{UK}_q(m, A, B, C, D)$ and is of the form (1.1). Then

$$\begin{split} |a_n| \leq \left\{ \begin{array}{c} \frac{1}{[n]_q} \prod_{i=0}^{n-2} \left(\frac{|Q_1(k)(C-D) - 2q[i]_q[i+1]_q^m D|}{2q[i+1]_q[i+2]_q^m} \right) \\ \\ + \frac{|Q_1(k)|(A-B)}{2[n]_q[n]_q^m} \sum_{j=1}^{n-1} \left[j \right]_q^m \prod_{i=0}^{j-2} \left(\frac{|Q_1(k)(C-D) - 2q[i]_q[i+1]_q^m D|}{2q[i+1]_q[i+2]_q^m} \right), \quad n \geq 2. \end{array} \right. \end{split}$$

where $|Q_1(k)|$ is defined by (1.3).

Proof. Let us take

$$\frac{S_q^{m+1} f(z)}{S_q^m g(z)} = p(z), \tag{2.9}$$

where

$$p(z) \in k - \mathcal{P}[A, B]$$
 and $g(z) \in k - \mathcal{ST}_q(m, C, D)$.

Now from (2.9), we have

$$S_q^{m+1}f(z) = S_q^m g(z)p(z),$$

which implies that

$$z + \sum_{n=2}^{\infty} [n]_{q}^{m+1} a_{n} z^{n} = \left(1 + \sum_{n=1}^{\infty} c_{n} z^{n}\right) \left(z + \sum_{n=2}^{\infty} [n]_{q}^{m} b_{n} z^{n}\right),$$

$$z + \sum_{n=2}^{\infty} [n]_{q}^{m+1} a_{n} z^{n} = \left(1 + \sum_{n=1}^{\infty} c_{n} z^{n}\right) \left(\sum_{n=1}^{\infty} [n]_{q}^{m} b_{n} z^{n}\right),$$

$$z + \sum_{n=2}^{\infty} [n]_{q}^{m+1} a_{n} z^{n} = \sum_{n=1}^{\infty} [n]_{q}^{m} b_{n} z^{n} + \left(\sum_{n=1}^{\infty} [n]_{q}^{m} b_{n} z^{n}\right) \left(\sum_{n=1}^{\infty} c_{n} z^{n}\right),$$

$$\sum_{n=2}^{\infty} \left\{ [n]_{q} a_{n} - b_{n} \right\} [n]_{q}^{m} z^{n} = \left(\sum_{n=1}^{\infty} [n]_{q}^{m} b_{n} z^{n}\right) \left(\sum_{n=1}^{\infty} c_{n} z^{n}\right),$$

$$(2.10)$$

By using Cauchy product formula on R.H.S of (2.10), we have

$$\sum_{n=2}^{\infty} \left\{ [n]_q \, a_n - b_n \right\} [n]_q^m \, z^n = \sum_{n=1}^{\infty} \left[\sum_{j=1}^{n-1} [j]_q^m \, b_j c_{n-j} \right] z^n. \tag{2.11}$$

Equating coefficients of z^n on both sides of (2.11), we have

$$\begin{aligned}
&\{[n]_q a_n - b_n\} [n]_q^m &= \sum_{j=1}^{n-1} [j]_q^m b_j c_{n-j}, \quad , a_0 = 1, \\
&[n]_q^{m+1} a_n &= [n]_q^m b_n + \sum_{j=1}^{n-1} [j]_q^m b_j c_{n-j}.
\end{aligned}$$

This implies that

$$[n]_q^{m+1} |a_n| \le [n]_q^m |b_n| + \sum_{j=1}^{n-1} [j]_q^m |b_j| |c_{n-j}|, \quad a_1 = 1.$$
 (2.12)

Since $p(z) \in k - \mathcal{P}[A, B]$, therefore by using lemma 1.2 on (2.12), we have

$$[n]_q^{m+1} |a_n| \le [n]_q^m |b_n| + \sum_{j=1}^{n-1} \frac{|Q_1(k)| (A-B)}{2} [j]_q^m |b_j|. \tag{2.13}$$

Again $g(z) \in k - \mathcal{ST}_q(m, C, D)$, therefore by using Theorem 2.3 on (2.13), we have

$$\begin{split} [n]_q^m \prod_{i=0}^{n-2} \left(\frac{|\mathcal{Q}_1(k)(C-D) - 2q[i]_q[i+1]_q^m D|}{2q[i+1]_q[i+2]_q^m} \right) \\ + \frac{|\mathcal{Q}_1(k)|(A-B)}{2} \sum_{j=1}^{n-1} \left[j \right]_q^m \prod_{i=0}^{j-2} \left(\frac{|\mathcal{Q}_1(k)(C-D) - 2q[i]_q[i+1]_q^m D|}{2q[i+1]_q[i+2]_q^m} \right), \end{split}$$

which implies that

$$\begin{split} |a_n| \leq \left\{ \begin{array}{c} \frac{1}{[n]_q} \prod_{i=0}^{n-2} \left(\frac{|\mathcal{Q}_1(k)(C-D) - 2q[i]_q[i+1]_q^m D|}{2q[i+1]_q[i+2]_q^m} \right) \\ + \frac{|\mathcal{Q}_1(k)|(A-B)}{2[n]_q[n]_q^m} \sum_{j=1}^{n-1} \left[j \right]_q^m \prod_{i=0}^{j-2} \left(\frac{|\mathcal{Q}_1(k)(C-D) - 2q[i]_q[i+1]_q^m D|}{2q[i+1]_q[i+2]_q^m} \right). \end{array} \right. \end{split}$$

When $q \to 1^-$, m = 0, we have the following known result, proved by Mahmood et al. (Mahmood et al., 2017).

Corollary 2.13. If $f(z) \in k - \mathcal{UK}(m, A, B, C, D)$ and is of the form (1.1). Then

$$|a_n| \le \begin{cases} \frac{1}{n} \prod_{i=0}^{n-2} \left(\frac{|Q_1(k)(C-D)-2iD|}{2(i+1)} \right) \\ + \frac{|Q_1(k)|(A-B)}{2n} \sum_{j=1}^{n-1} \prod_{i=0}^{j-2} \left(\frac{|Q_1(k)(C-D)-2iD|}{2(i+1)} \right), \ n \ge 2, \end{cases}$$

where $Q_1(k)$ is defined by (1.3).

When $q \to 1^-$, m = 0, A = 1, B = -1, C = 1, D = -1, we have the following known result, proved by Noor et al. (Noor et al., 2009).

Corollary 2.14. *If* $f(z) \in k - \mathcal{UK}(0, 1, -1, 1, -1)$ *and is of the form* (1.1). *Then*

$$|a_n| \le \frac{(|Q_1(k)|)_{n-1}}{n!} + \frac{|Q_1(k)|}{n} \sum_{j=0}^{n-1} \frac{(|Q_1(k)|)_{j-1}}{(j-1)!}, \quad n \ge 2.$$

When $q \to 1^-$, m = 0, k = 0, A = 1, B = -1, C = 1, D = -1, we have the following known result, proved by Kaplan (Kaplan, 1952).

Corollary 2.15. If $f(z) \in 0 - \mathcal{UK}(0, 1, -1, 1, -1) = \mathcal{K}$ and is of the form (1.1). Then

$$|a_n| \leq n, \quad n \geq 2.$$

Theorem 2.8. If $f(z) \in k - \mathcal{U}Q_q(m, A, B, C, D)$ and is of the form (1.1). Then

$$\begin{split} |a_n| & \leq \left\{ \begin{array}{c} \frac{1}{[n]_q^2} \prod_{i=0}^{n-2} \left(\frac{\left| Q_1(k)(C-D) - 2q[i]_q[i+1]_q^m D \right|}{2q[i+1]_q[i+2]_q^m} \right) \\ & + \frac{|Q_1(k)|(A-B)}{2[n]_q^2[n]_q^m} \sum_{j=1}^{n-1} \left[j \right]_q^m \prod_{i=0}^{j-2} \left(\frac{\left| Q_1(k)(C-D) - 2q[i]_q[i+1]_q^m D \right|}{2q[i+1]_q[i+2]_q^m} \right), \end{array} \right. \end{split}$$

where $|Q_1(k)|$ is defined by (1.3).

Proof. The proof follows immediately by using Theorem 2.7 and (1.7).

When $q \to 1^-$, m = 0, we have the following known result, proved by Mahmood at al. (Mahmood *et al.*, 2017).

Corollary 2.16. If $f(z) \in k - \mathcal{UK}(m, A, B, C, D)$ and is of the form (1.1). Then

$$\begin{split} |a_n| \leq \left\{ \begin{array}{c} \frac{1}{n^2} \prod_{i=0}^{n-2} \left(\frac{|Q_1(k)(C-D)-2iD|}{2(i+1)} \right) \\ + \frac{|Q_1(k)|(A-B)}{2n^2} \sum_{j=1}^{n-1} \prod_{i=0}^{j-2} \left(\frac{|Q_1(k)(C-D)-2iD|}{2(i+1)} \right), \ n \geq 2. \end{array} \right. \end{split}$$

References

Acu, M. (2006). On a subclass of n-uniformly close-to-convex functions. Gen. Math. 14, 55-64.

Aghalary, R. and G. Azadi (2015). The Dziok-Srivastava operator and *k*-uniformly starlike functions. *J. Inequal. Pure Appl. Math.*

Ahiezer, N. I. (1970). Elements of theory of elliptic functions. Moscow.

Altınkaya, Ş. and S. Yalçın (2017). On the Fekete-Szegö problem for analytic functions defined by using symmetric *q*-derivative operator. *Konuralp Journal of Mathematics* **5**, 176–186.

Goodman, A. W. (1983). Univalent Functions. Polygonal Publishing House, Washington.

Govindaraj, M. and S. Sivasubramanian (2018). On a class of analytic functions related to conic domains involving to *q* -calculus. In: *Analysis Math*.

Hussain, S., S. Khan, M. A. Zaighum and M. Darus (2017). Certain subclass of analytic functions related with conic domains and associated with Salagean *q*-differential operator. *AIMS Mathematics* **2**, 622–634.

Janowski, W. (1973). Some extremal problems for certain families of analytic functions I. *Annales Polonici Mathematici* **28**(3), 297–326.

Kanas, S. (2003). Techniques of the differential subordination for domains bounded by conic sections. *Int. J. Math. Math. Sci.* **38**, 2389–2400.

Kanas, S. and A. Wisniowska (1999). Conic regions and *k*-uniform convexity. *J. Comput. Appl. Math.* **105**, 327–336. Kanas, S. and A. Wisniowska (2000). Conic domains and starlike functions. *Rev. Roumaine Math. Pures Appl.* **45**, 647–657.

- Kaplan, W. (1952). Close-to-convex Schlicht functions. Mich. Math. J. 1, 169–185.
- Libera, Richard J. (1964). Some radius of convexity problems. Duke Math. J. 31(1), 143–158.
- Magesh, N., Ş. Altınkaya and S. Yalçin (2018). Certain subclasses of *k*-uniformly starlike functions associated with symmetric *q*-derivative operator. *Journal of Computational Analysis and Applications* **24**, 1464–1473.
- Mahmood, S., M. Arif and S. N. Malik (2017). Janowski type close-to-convex functions associated with conic regions. *Journal of Inequalities and Applications*.
- Miller, S. S. and P. T. Mocanu (2000). *Differential Subordinations: Theory and Applications*. Pure and Applied Mathematics. Dekker, New York.
- Noor, K. I. (1987). On quasi-convex functions and related topics. Int. J. Math. Math. Sci. 2(2), 241-258.
- Noor, K. I. (1989). *On some subclasses of close-to-convex functions in univalent functions*. Fractional Calculus and Their Applications. Wiley, London.
- Noor, K. I. and S. N. Malik (2011). On coefficient inequalities of functions associated with conic domains. *Comput. Math. Appl.* **62**, 2209–2217.
- Noor, K. I., J. Sokół and Q. Z. Ahmad (2017). Applications of conic type regions to subclasses of meromorphic univalent functions with respect to symmetric points. *Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas* **111**(4), 947–958.
- Noor, K. I., M. Arif and W. Ul-Haq (2009). On *k*-uniformly close-to-convex functions of complex order. *Appl. Math. Comput.* **215**, 629–635.
- Purohit, S. D. and R. K. Raina (2013). Fractional *q*-calculus and certain subclass of univalent analytic functions. *Mathematica(Cluj)* **55**, 62–74.
- Rogosinski, W. (1943). On the coefficients of subordinate functions. Proc. Lond. Math. Soc. 48, 42–82.
- Salagean, G. S. (1983). Subclasses of univalent functions, in: Complex Analysis. fifth Romanian–Finnish Seminar, Part 1 (Bucharest, 1981), Lecture Notes in Mathematics, 1013, Springer, Berlin.
- Shams, S., S. R. Kulkarni and J. M. Jahangiri (2004). Classes of uniformly starlike and convex functions. *Int. J. Math. Math. Sci.* **55**, 2959–2961.
- Silverman, H. (1975). Univalent functions with negative coefficients. Proc. Amer. Math. Soc. 51, 109–116.
- Silvia, E. M. (1983). Subclasses of close-to-convex functions. Int. J. Math. Math. Sci. 3, 449–458.
- Srivastava, H. M. (1989). *Univalent functions, fractional calculus, and associated generalized hypergeometric functions in Univalent Functions, Fractional Calculus, and Their Applications*. Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto.
- Srivastava, H. M., C. Ramachandran and A. Swaminathan (2007). A unified class of *k*-uniformly convex functions defined by the Salagean derivative operator. *Atti Sem. Mat. Fis. Modena Reggio Emilia* **55**, 47–59.
- Srivastava, H. M., S.-H. Li and H. Tang (2009). Certain classes of *k*-uniformly close-to-convex functions and other related functions defined by using the Dziok-Srivastava operator. *Bull. Math. Anal. Appl.* **1**, 49–63.
- Srivastava, H. M., Y. J. Sim, O. S. Kwon and N. E. Cho (2012). Some classes of analytic functions associated with conic regions. *Taiwanese J. Math.* **16**, 387–408.
- Subramanian, K. G., T. V. Sudharasan and H. Silverman (2003). On uniformly close-to-convex function and uniformly quasi-convex function. *Int. J. Math. Math. Sci.* **48**, 5053–5058.