ZR(IV) MOFS BASED ON TEREPHTALIC ACID AND ACETIC ACID MODULATOR

Authors

  • Mirela PICIORUS Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania
  • Alexandru POPA Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania
  • Catalin IANASI Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania
  • Elisabeta I. SZERB Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania
  • Carmen CRETU Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania

Keywords:

: Zirconium (IV) Metal-organic frameworks; terephtalic acid; surface area

Abstract

Herein, we present the investigation of a fast modulated synthesis of micro/meso sized ZrMOF,porous materials known as UIO-66, containing terephtalic acid (H2BDC) as organic linker using an excess of metal salt precursor and different concentrations of acetic acid (AAc) as organic modulator. The increase in the concentration of modulator up to a certain value leads to an improvement of surface area and a modification of pore nstructure by producing mesopores at the expense of micropores.

Author Biographies

Mirela PICIORUS, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania

“Coriolan Dragulescu†Institute of Chemistry

Alexandru POPA, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania

“Coriolan Dragulescu†Institute of Chemistry

Catalin IANASI, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania

“Coriolan Dragulescu†Institute of Chemistry

Elisabeta I. SZERB, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania

“Coriolan Dragulescu†Institute of Chemistry

Carmen CRETU, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania

“Coriolan Dragulescu†Institute of Chemistry

References

Angeli, G.K., Batzavali, D., Mavronasou, K.,
Tsangarakis, C., Stuerzer, T., Ott, H.,
Trikalitis, P.N., 2020. Remarkable Structural
Diversity between Zr/Hf and Rare-Earth
MOFs via Ligand Functionalization and the
Discovery of Unique (4,8)-c and (4, 12)-
connected Frameworks. J. Am. Chem. Soc.
142, 15986−15994.
https://doi.org/10.1021/jacs.0c07081
Ardila-Suarez, C., Rodríguez-Pereira, J.,
Baldovino-Medrano, V.G., RamírezCaballero, G.E., 2019. An Analysis of the
Effect of the Zirconium Precursor of MOF808 on its Thermal Stability, Structural and
Surface Properties. Cryst. Eng. Comm. 21,
1407−1415.
https://doi.org/10.1039/C8CE01722K
Bai, Y., Dou, Y., Xie, L.-H., Rutledge, W.,
Li, J.-R. Zhou, H.-C., 2016. Zr-based metal–
organic frameworks: design, synthesis,
structure, and applications. Chem. Soc. Rev.
45, 2327.
https://doi.org/10.1039/C5CS00837A
Brunauer, S., Emmett, P.H., Teller, E., 1938.
Adsorption of Gases in Multimolecular
Layers. J. Am. Chem. Soc. 60(2), 309−319.
https://doi.org/10.1021/ja01269a023
Cavka, J.H., Jakobsen, S., Olsbye, U.,
Guillou, N., Lamberti, C., Bordiga, S.,
Lillerud, K.P., 2008. A new zirconium
inorganic building brick forming metal
organic frameworks with exceptional
stability. J. Am. Chem. Soc. 130, 42, 13850–
13851.
https://doi.org/10.1021/ja8057953
Chang, Z., Li, F., Qi, X., Jiang, B., Kou, J.,
Sun, C., 2020. Selective and Efficient
Adsorption of Au (III) in aqueous solution by
Zr-based metal-organic frameworks (MOFs):
An unconventionally way for gold recycling.
J. Hazard. Mater. 391, 122175.
https://doi.org/10.1016/j.jhazmat.2020.12217
5
Chen, Z., Hanna, S.L., Redfern, L.R., Alezi,
D., Islamoglu, T., Farha, O.K., 2019.
Reticular chemistry in the rational synthesis
of functional zirconium cluster-based MOFs.
Coord. Chem. Rev. 386, 32–49.
https://doi.org/10.1016/j.ccr.2019.01.017
Chen, Z., Feng, L., Liu, L., Bhatt, P.M., Adil,
K., Emwas, A.-H., Assen, A.H.,
Belmabkhout, Y., Han, Y., Eddaoudi, M.,
2018. Enhanced Separation of butane Isomers
via Defect Control in Fumarate/ZirconiumBased Metal Organic Framework. Langmuir
34, 48, 14546−14551.
https://doi.org/10.1021/acs.langmuir.8b03085
Drout, R.J., Robison, L., Chen, Z., Islamoglu,
T., Farha, O.K., 2019. Zirconium Metal–
Organic Frameworks for Organic Pollutant
Adsorption, Trends Chem., 1(3), 304−3017.
https://doi.org/10.1016/j.trechm.2019.03.010
Fang, X., Zong, B., Mao, S., 2018. Metal–
Organic Framework-Based Sensors for
Environmental Contaminant Sensing. NanoMicro Lett. 10, 64.
https://doi.org/10.1007/s40820-018-0218-0
Feng, D., Wang, K., Wei, Z., Chen, Y.P.,
Simon, C.M., Arvapally, R.K., Martin, R.L.,
Bosch, M., Liu, T.-F., Fordham, S., Yuan, D.,
Omary, M.A., Haranczyk, M., Smit, B., Zhou,
H.-C., 2015. Kinetically Tuned Dimensional
Augmentation as a Versatile Synthetic Route
towards Robust Metal–organic Frameworks.
Nat. Commun. 6, 6106.
https://doi.org/10.1038/ncomms7106
Ghanbari, T., Abnisa, F., Wan Daud, W.M.A.,
2020. A review on production of metal
organic frameworks (MOF) for CO2
Adsorption. Sci. Total Environ. 707, 135090.
https://doi.org/10.1016/j.scitotenv.2019.13509
0
Guan, T., Li, X., Fang, W., Wu, D., 2020.
Efficient removal of phosphate from acidified
urine using UIO-66 metal-organic
frameworks with varying functional groups.
Appl. Surf. Sci. 501, 144074.
https://doi.org/10.1016/j.apsusc.2019.144074
Han, X., Godfrey, H.G.W., Briggs, L.,
Davies, A.J., Cheng, Y., Daemen, L.L.,
Sheveleva, A.M., Tuna, F., McInnes, E.J.L.,
Sun, J., Drathen, C., George, M.W., RamirezCuesta, A.J., Thomas, K.M., Yang, S.,
Schröder M., 2018. Reversible adsorption of
nitrogen dioxide within a robust porous
metal–organic framework, Nat. Nat. 17(8),
691−696.
https://doi.org/10.1038/s41563-018-0104-7
Han, Y., Liu, M., Li, K., Zuo, Y., Wei, Y.,
Xu, S., Zhang, G., Song, C., Zhang, Z.C.,
Guo, X., 2015. Facile synthesis of
morphology and size-controlled zirconium
metal–organic framework UiO-66: the role of
hydrofluoric acid in crystallization. Cryst.
Eng. Comm. 17, 6434−6440.
https://doi.org/10.1039/C5CE00729A
Helal, A., Cordova K.E., Arafat, E., Usman,
M., Yamani Z.H., 2020. Defect-engineering a
metal–organic framework for CO2 fixation in
the synthesis of bioactive oxazolidinones.
Inorg. Chem. Front. 7, 3571−3577.
https://doi.org/10.1039/D0QI00496K
Hu, Z., Peng, Y., Kang, Z., Qian, Y., Zhao,
D., 2015. A Modulated Hydrothermal (MHT)
Approach for the Facile Synthesis of UiO-66-
Type MOFs. Inorg. Chem. 54(10),
4862−4868.
https://doi.org/10.1021/acs.inorgchem.5b0043
5
Jiang, K., Zhang, L., Hu, Q., Zhang X.,
Zhang, J., Cui, Y., Yang, Y., Li, B., 2019.
Guodong Qian, A Zirconium-based Metalorganic Framework with Encapsulated
Anionic Drug for Uncommonly Controlled
Oral Drug Delivery. Microporous
Mesoporous Mater. 275, 229−234.
https://doi.org/10.1016/j.micromeso.2018.08.
030
Kalaj, M., Prosser, K.E., Cohen, S.M., 2020.
Room Temperature Aqueous Synthesis of
UiO-66 Derivatives via Postsynthetic
Exchange, Dalton Trans. 49, 8841-8845.
https://doi.org/10.1039/D0DT01939A
Kirlikovali, K.O., Chen, Z., Islamoglu, T.,
Hupp, J.T., Farha, O.K., 2020. ZirconiumBased Metal−Organic Frameworks for the
Catalytic Hydrolysis of Organophosphorus
Nerve Agents. ACS Appl. Mater. Interfaces
120, 16, 8130–8160.
https://doi.org/10.1021/acsami.9b20154
Li, B., Chrzanowski, M., Zhang, Y., Ma, S.,
2016. Applications of metal-organic
frameworks featuring multi-functional sites.
Coord. Chem. Rev. 307, 106–129.
https://doi.org/10.1016/j.ccr.2015.05.005
Li, H.Y., Xu, J., Li, L.K., Du, X.S., Li, F.A.,
Xu, H., Zang, S.Q., 2017. Photochromic
Properties of a Series of Zn(II)-Viologen
Complexes with Structural Regulation by
Anions. Cryst. Growth Des. 17, 6311–6319.
https://doi.org/10.1021/acs.cgd.7b00995
Li, B., Zhua, X., Hu, K., Li, Y., Feng, J., Shi,
J., Gu, J., 2016. Defect creation in metalorganic frameworks for rapid and controllable
decontamination of roxarsone from aqueous
solution. J. Hazard. Mater. 302, 57–64.
https://doi.org/10.1016/j.jhazmat.2015.09.040
Liu, S., Bai, J., Huo, Y., Ning, B., Peng, Y.,
Li, S., Han, D., Kang, W., Gao, Z., 2020. A
zirconium-porphyrin MOF-based ratiometric
fluorescent biosensor for rapid and
ultrasensitive detection of chloramphenicol.
Biosens. Bioelectron. 149, 111801.
https://doi.org/10.1016/j.bios.2019.111801
Pan, D., Jaroniec, M., Klinik, J., 1996.
Thermogravimetric evaluation of the specific
surface area and total porosity of microporous
carbons. Carbon 34(9), 1109−1113.
https://doi.org/10.1016/0008-6223(96)00063-
2
Piszczek, P., Radtke, A., Grodzicki, A.,
Wojtczak, A., Chojnacki, J., 2007. The new
type of [Zr6(μ3-O)4(μ3-OH)4] cluster core:
Crystal structure and spectral characterization
of [Zr6O4(OH)4(OOCR)12] (R=But,
C(CH3)2Et). Polyhedron 26(3), 679−685.
https://doi.org/10.1016/j.poly.2006.08.025
Ravikovitch, P.I., O’Domhnaill, S.C.,
Neimark, A.V., Schuth, F., Unger, K.K.,
1995. Capillary hysteresis in nanopores:
theoretical and experimental studies of
nitrogen adsorption on MCM-41, Langmuir
11, 4765–4772.
https://doi.org/10.1021/la00012a030
Ren, J., Ledwaba, M., Musyoka N.M.,
Langmi, H.W., Mathe, M., Liao, S., Pang W.,
2017. Structural defects in metal–organic
frameworks (MOFs): Formation, detection
and control towards practices of interests.
Coord. Chem. Rev. 349, 169–197.
https://doi.org/10.1016/j.ccr.2017.08.017
Schaate, A., Roy, P., Godt A., Lippke, J.,
Waltz, F, Wiebcke, M., Behrens, P., 2011.
Modulated Synthesis of Zr-Based Metal–
Organic Frameworks: From Nano to Single
Crystals, Chem. Eur. J. 17, 6643–6651.
https://doi.org/10.1002/chem.201003211
Seetharaj, R., Vandana, P.V., Arya, P.,
Mathew, S., 2019. Dependence of solvents,
pH, molar ratio and temperature in tuning
metal organic framework architecture. Arab.
J. Chem. 12, 295–315.
https://doi.org/10.1016/j.arabjc.2016.01.003
Sharmin, E., Zafar, F., 2016. Introductory
Chapter: Metal Organic Frameworks (MOFs),
Metal-Organic Frameworks, Edited by Zafar,
F. and Sharmin, E., IntechOpen.
https://dx.doi.org/10.5772/64797
Shearer, G.C., Chavan, S., Bordiga, S., Svelle,
S., Olsbye U., Lillerud K.P., 2016. Defect
Engineering: Tuning the Porosity and
Composition of the Metal–Organic
Framework UiO-66 via Modulated Synthesis.
Chem. Mater. 28, 3749−3761.
https://doi.org/10.1021/acs.chemmater.6b006
02
Silverstein, R.M., Webster, F.X., 1998.
Spectrometric identification of organic
compounds, Sixth Ed., John Wiley & Sons,
Inc., New York, USA
Su, J., Yuan, S., Wang, T., Lollar, C., Zuo, J.,
Zhang, J., Zhou, H., 2020. Zirconium Metalorganic frameworks Incorporating
Tetrathiafulvalene Linkers: Robust and
Redox-Active Matrices For In Situ
Confinement of Metal Nanoparticles. Chem.
Sci. 11, 1918–1925.
https://doi.org/10.1039/C9SC06009J
Taddei, M., 2017. When defects turn into
virtues: The curious case of zirconium-based
metal-organic frameworks. Coord. Chem.
Rev. 343, 1–24.
https://doi.org/10.1016/j.ccr.2017.04.010
Thommes, M., Kaneko, K., Neimark, A.V.,
Olivier, J.P., Rodriguez-Reinoso, F.,
Rouquerol, J., Sing, K.S.W., 2015.
Physisorption of gases, with special reference
to the evaluation of surface area and pore size
distribution (IUPAC Technical Report). Pure
Appl. Chem. 87(9-10), 1051–1069.
https://doi.org/10.1515/pac-2014-1117
Wang, S.L., Hu, F.L., Zhou, J.Y., Zhou, Y.,
Huang, Q., Lang, J.P., 2015. Rigidity versus
Flexibility of Ligands in the Assembly of
Entangled Coordination Polymers based on Bi
and Tetra Carboxylates and N-Donor
Ligands. Cryst. Growth Des. 15, 4087–4097.
https://doi.org/10.1021/acs.cgd.5b00642
Wang, B., Wang, P., Xie, L.-H., Lin, R.-B.,
Lv, J., Li, J.-R., Che, B., 2019. A Stable
Zirconium based Metal-Organic Framework
for Specific Recognition of Representative
Polychlorinated Dibenzo-p-dioxin Molecules.
Nat. Commun. 10, 3861.
https://doi.org/10.1038/s41467-019-11912-4
Wang, Y., Li, L., Dai, P., Yan, L., Cao, L.,
Gu, X., Zhao, X., 2017. Missing-node
directed synthesis of hierarchical pores on a
zirconium metalorganic framework with
tunable porosity and enhanced surface acidity
via a microdroplet flow reaction. J. Mater.
Chem. A 5(42), 22372–22379.
https://doi.org/10.1039/C7TA06060B
Winarta, J., Shan, B., Mcintyre, S.M., Ye, L.,
Wang, C., Liu, J., Mu, B., 2020. A Decade of
UiO-66 Research: A Historic Review of
Dynamic Structure, Synthesis Mechanisms,
and Characterization Techniques of an
Archetypal Metal−Organic Framework. Cryst.
Growth Des. 20, 1347−1362.
https://doi.org/10.1021/acs.cgd.9b00955
Xiong, Y., Fang, Y.Z., Borges, D.D., Chen,
C.X., Wei, Z.W., Wang, H.P., Pan, M., Jiang,
J.J., Maurin, G., Su, C.Y., 2016. Ligand and
Metal Effects on the Stability and Adsorption
Properties of an Isoreticular Series of Mofs
Based on T-shaped Ligands and PaddleWheel Secondary Building Units. Chem. Eur.
J. 22, 16147–16156.
https://doi.org/10.1002/chem.201603299
Yao, S.-L., Liu, S.-J., Cao, C., Tian, X.-M.,
Bao, M.-N., Zheng, T.-F., 2019. Temperatureand Solvent-Dependent Structures of Three
Zn(II) Metal-Organic Frameworks for
Nitroaromatic Explosives Detection. J. Solid
State Chem. 269, 195–202.
https://doi.org/10.1016/j.jssc.2018.09.032
Yang, F., Li, W., Tang B., 2018. Facile
synthesis of amorphous UiO-66 (Zr-MOF) for
supercapacitor application. J. Alloys Compd.
733, 8–14.
https://doi.org/10.1016/j.jallcom.2017.10.129

Downloads

Published

2021-02-24